
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998 819

Hardware/Software Partitioning
for Multifunction Systems

Asawaree Kalavade and P. A. Subrahmanyam,Fellow, IEEE

Abstract—We are interested in optimizing the design of mul-
tifunction embedded systems such as multistandard audio/video
codecs and multisystem phones. Such systems run a prespecified
set of applications, and any “one” of the applications is selected
at a run time, depending on system parameters. Our goal is to
develop a methodology for the efficient design of such systems.

A key observation underlying our method is that it may not
be efficient to design for each application separately. This is
attributed to two factors. First, considering each application
in isolation can lead to application-specific decisions that do
not necessarily lead to the best overall system solution. Second,
these applications typically tend to have several commonalities
among them, and considering applications independently may
lead to inconsistent mappings of common tasks in different
applications. Our approach is to optimize jointly across the set
of applications while ensuring that each application itself meets
its timing constraints.

Based on these guiding principles, we formulate, as a codesign
problem, the design and synthesis of an efficient hardware-
software implementation for a multifunction embedded system.
The first step in our methodology is to identify nodes that
represent similar functionality across different applications. Such
“common” nodes are characterized by several metrics such as
their repetitions, urgency, concurrency, and performance/area
tradeoff. These metrics are quantified and used by a hard-
ware/software partitioning tool to influence hardware/software
mapping decisions. The idea behind this is to bias common tasks
toward the same resource as far as possible while also considering
preferences and timing constraints local to each application.
Further, relative criticality of applications is also considered, and
the mapping decisions in more critical applications are allowed to
influence those in less critical applications. We demonstrate how
this is achieved by modifying an existing partitioning algorithm
(GCLP) used to partition single-function systems. Our modified
algorithm considers global preferences across the application set
as well as the preference of each individual application to generate
an efficient overall solution while ensuring that timing constraints
of each application are met. The overall result of the system-level
partitioning process is 1) a hardware or software mapping and
2) a schedule for execution for each node within the application
set. On an example set consisting of three video applications, we
show that the solution obtained by the use of our method is 38%
smaller than that obtained when each application is considered
independently.

Index Terms— Hardware-software codesign, hardware/soft-
ware partitioning, multifunction systems, system-level design,
video encode/decode.

Manuscript received January 8, 1998; revised February 12, 1998. This paper
was recommended by Associate Editor G. Borriello.

A. Kalavade is with Bell Labs, Murray Hill, NJ 07974 USA.
P. A. Subrahmanyam is with the Computer System Laboratory, Stanford

University, Stanford, CA 94305 USA.
Publisher Item Identifier S 0278-0070(98)06769-4.

I. INTRODUCTION

T HE hardware-software codesign problem has received a
lot of attention recently. Typical efforts in the hardware-

software codesign for embedded systems assume that the
system supports a single application. Thus, the goal is to find
the best hardware-software implementation for aparticular
application, say, a video encoder or a graphics controller.
However, there is a growing class of embedded systems that
needs to execute aset of applicationsrather than just a single
application. Such systems fall into two broad categories.

1) Systems that execute multiple applications concurrently,
e.g., set-top boxes with concurrent applications like
audio, video, and Web browsing.

2) Multifunction systems that support multiple functions
or applications, of which only one is executed at any
instant. Consider, for example, a multistandard video
codec that supports MPEG2, H.261, and JPEG algo-
rithms. Depending on whether the user is watching a
movie or conducting a video conference, any one of
these applications would run at a given time. Such
multifunction systems offer alternatives between vari-
ous functionalities—the specific alternative is typically
selected at run time. Another example is a multisystem
cellular phone that supports time division multiple ac-
cess, code division multiple access (CDMA), and global
system for mobility, only one of which is active at a
given time, depending on the area of usage. A third
example is a multiprotocol data-transmission system
that handles different communication protocols such as
Ethernet, v.34, etc.

In this paper, we focus on the design of systems that
belong to the second category. We refer to such systems as
multifunctionsystems. Note that we use the terms “function”
and “application” interchangeably.

Due to time-to-market pressures, as well as the inherent suit-
ability of some parts of the applications to either hardware or
software, it is quite common for such multifunction embedded
systems to have mixed hardware-software implementations.
Our belief is that such systems can be designed efficiently if
they are optimized across the set of applications. That is, the
hardware/software partitioning decisions for each application
can be made by considering the impact on and of other
applications in the set, and not just the timing constraints
of the application under consideration. Optimizing the im-
plementation for each application independently often leads
to application-specific implementation decisions that do not

0278–0070/98$10.00 1998 IEEE

820 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

necessarily yield the best overall cost-performance results. For
example, focusing on an individual application may lead to a
decision to use a specialized (but not very reusable) hardware
module, whereas investing the same or comparable area in
a programmable processor core may yield a module with a
much higher degree of reuse across different applications.
Also, a joint consideration makes it possible to exploit the
slack in one application and allow a “critical” application to be
implemented more efficiently, thereby improving the overall
solution. Further, since the applications in the mix are often
related, there are often several commonalities between the
applications. For example, a discrete cosine transform (DCT)
function may occur in several video applications. When appli-
cations are considered independently, their implementations
could be inconsistent. Thus, a hardware implementation may
be selected for the DCT in one application while a software
implementation may be selected in the other application. For
these reasons, we believe that, when designing for a multiap-
plication set, it is important to consider all the applications
in the set simultaneously rather than design for individual
applications. Our objective in this paper is to describe a
methodology based on this belief and to demonstrate its payoff
for concrete applications.

Toward this end, we formulate a codesign problem for
the design and synthesis of an efficient hardware-software
implementation for a multifunction embedded system. We
assume that each application in the system has real-time con-
straints. The system-level design problem has two constituent
subproblems: 1) hardware/software partitioning, which is the
problem of mapping and scheduling each of the components
in all of the applications in the given set, and 2) synthesis of
the hardware, software, and interface components for all the
applications in the given set. In this paper, we refer to this
system-level design problem as themultiapplication codesign
problem. While our paper focuses primarily on the partitioning
problem, we also touch upon the synthesis problem.

Our approach to solving the partitioning problem is to
modify traditional partitioning approaches so as to incorporate
the unique features of multifunction systems. We begin by as-
suming that each application is specified by a directed acyclic
graph (DAG) where the nodes represent computations of
“coarse” granularity. This level of granularity could represent,
say, a DCT on a block of pixels. Nodes that are common across
applications are identified based on their functionality and
parameters. The common nodes are characterized by several
metrics (called commonality measures) like their repetitions,
urgency, concurrency, performance/area tradeoff, etc. Applica-
tions are ordered according to their relative criticality. These
metrics are used by the partitioning tool to make partitioning
decisions jointly across different applications. We propose
two specific algorithms for partitioning multifunction systems.
These methods modify GCLP, an algorithm for partitioning a
single application, developed by Kalavadeet al. [1].

In the first method for multifunction partitioning, called
hardware-oriented partitioning (HOP), the mapping of com-
mon nodes is biased toward a hardware implementation. The
commonality measures are used to determine this bias. The in-
tuition is that by biasing the common nodes toward hardware,

the less common nodes may get mapped to software, thereby
reducing the overall hardware area and reusing the hardware
resource more efficiently across all applications. Note that the
commonality measures are used to bias the mappings—not to
assignthe mappings. In other words, commonality measures
indicate a preference for a mapping, based on the other
applications in the set, but the final mapping decision is
made by the partitioning tool. Specifically, the partitioning
algorithm takes into account the demands of the application
under consideration as well as the bias introduced by the other
applications in the set, and attempts to generate a solution that
minimizes hardware area while meeting timing constraints for
that application. This use of bias is a subtle point. GCLP is a
good vehicle to express bias, as we shall see in Section IV-B.

The second method for multifunction partitioning, called
consistency and hardware oriented partitioning (CHOP) tries
to incorporate the consistency requirement mentioned earlier.
In this case, the key idea is to use application criticality to
influence the order in which applications are considered for
mapping, as well as to propagate mapping decisions across
applications. In other words, if a node of the same type
as the node being considered in the current application has
been mapped earlier by some other application, the mapping
decision for the node in the current application is biased in the
direction of the previous mapping. When the node is consid-
ered for the first time, its performance/area measures are used
to make the decision local to that application. The intuition
here is to give preference to a more “critical” application, and
the mapping decisions made for this application are allowed
to influence mappings of other not-so-critical applications con-
sidered subsequently. For example, consider a low-criticality
application with a large deadline. Suppose that a nodein this
application can be implemented in two different feasible ways

and with giving a slightly better solution for this ap-
plication. Also say that a node of the same type as nodewas
mapped to implementation by a more critical application.
In this case, the mapping of nodecan be set to instead of
developing two different implementations for nodeThus,
a suboptimal solution for one application may be selected
in order to get a better overall solution. Such an approach
is greedy. However, by ranking the applications in the order
of their importance, the greediness is applied in a controlled
manner. It is also possible for the user to go back and change
mappings in applications considered earlier. Subsequent map-
pings can be recomputed by applying the partitioning tool.
Since the partitioning algorithm is quite efficient (quadratic in
the number of nodes), such an exploration is easily possible.

Note that the partitioning process computes not just the
mapping but a schedule for the execution of each application as
well. Once the partitioning process is finished, synthesis tools
are used to generate the hardware and software components
for each application. Our synthesis approach is based on
cosynthesis tools developed by Kalavadeet al. within the
Ptolemy design environment [2]. There are still some issues
that need to be solved in the context of synthesis, which we
mention in Section V.

The rest of this paper is organized as follows. In Section II,
we define the multiapplication codesign problem in more

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 821

detail and describe the assumed specification semantics and
the architectural model. The overall methodology is described
in Section II-C. In Section III, we discuss some of the re-
lated work in this area. In Section IV, we describe the two
algorithms, HOP and CHOP. The hardware/software cosyn-
thesis approach is described in Section V. In Section VI,
we demonstrate the use of the proposed algorithms with
the help of an example application set consisting of three
video applications. We compare the total system area obtained
when each application is considered independently to the total
system area obtained by applying the two proposed algorithms.
The resultant solution is shown to be 8% smaller with HOP
and 38% smaller with CHOP.

II. PROBLEM DEFINITION AND CODESIGN METHODOLOGY

A. Specification of Applications

We are interested in the codesign of multifunction systems,
where, given a set of applications,
only one of these applications is active at a given time.
The particular application running at a given time is selected
at run time, either determined by the user by selecting a
certain application (such as selecting between MPEG2 decode
or H.261 in a video codec, depending on whether the user
is watching a movie or conducting a video conference, re-
spectively) or determined automatically by system parameters
(such as automatically shifting from CDMA to Advanced
Mobile Phone System (AMPS) in a multimode cellular phone
when the area of use changes). To simplify the problem, we
do not consider the design of the control code that selects
the application at run time. We focus on the design of an
implementation that supports the set of applications such
that any one may be active at a given time and the active
application meets its timing constraints.

We consider applications that have a periodic repetitive
behavior with fixed timing constraints. One iteration through
the application is assumed to be specified as a DAG
(where nodes specify computations and
edges specify data and control precedences between nodes.
Each edge is also assumed to be annotated by the number
of data samples communicated between nodesand Each
application has a timing constraint that specifies the
maximum allowable time for executing one iteration of
the application. The DAG can be generated from data-flow
descriptions, such as in the synchronous data-flow (SDF)
domain of Ptolemy [2]. Note that an SDF specification sup-
ports iterations (where the number of iterations is known
at compile time), delays, hierarchy, feedback, and multirate
operations (multirate graphs are typically translated to a DAG
by unfolding). The nodes of the DAG are at a “coarse” level of
granularity; for instance, typical nodes might include a DCT,
finite impulse response (FIR) filter, or quantizer. Although this
model of specification limits the class of applications that can
be described, we have found that a fairly large number of
continuous media applications such as audio/video encode/
decode can be described in this model. The benefit of this
constrained model is that it permits a static (compile-time)

Fig. 1. Specifying a single application. Note the granularity of nodes and
the deadline constraint.

analysis of the graph. A limitation of this approach is that
control operations are assumed to be either encapsulated within
nodes of the DAG or flattened out. Our approach is to try to
optimize the data-flow parts of the designs across multiple
applications. An area of future work is in the design of mixed
control-data-flow systems.

Fig. 1 shows the specification of an application. Fig. 2
shows an end system that supports a set of multiple ap-
plications. Our objective is to optimize the design of an
implementation that supports all of the applications, such
that each application when selected to run meets its timing
constraints. The design objective is to minimize the cost of
the complete system supporting all the applications in the set.

B. Architecture Specification

Before we proceed with a discussion of the design method-
ology, we summarize the assumed system architecture. The
embedded system is assumed to consist of three types of
resources:

1) a single programmable processor core that executes the
software component of the nodes mapped to software;

2) a set offixed-function hardware accelerators,each of
which is designed for a single function in hardware,
e.g., motion estimation;

3) macrofunction hardware modules,each of which sup-
ports a closely related class of tasks differing in pa-
rameters or interfaces, e.g., a filter module with pro-
grammable taps that supports different FIR filters.

Another example of a macrofunction hardware module is a
coprocessor optimized for vector operations that supports DCT
and inverse (I) DCT.

In this paper, we assume that a fixed-function hardware
accelerator can be synthesized for any node. We describe
mechanisms to estimate the area and size of such accelera-
tors in Section II-C and describe methods to synthesize an
implementation for them in Section V. We also assume that
the macrofunction hardware modules, on the other hand, are
selected from a list ofavailable modules. In Section IV-A1,
we propose a method that may be used to design such a
module, but we have not implemented this method.

The end system is also assumed to be constrained by the
amount of memory available (hence restricting the soft-
ware size possible) and the maximum hardware area possible

(based on packing constraints, for example). Fig. 3(a)
shows the architecture of the embedded system.

822 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

Fig. 2. An end system supporting a set of audio applications. The control code selects the application active at run time. We focus on the design of an
implementation that supports all the applications in the set such that each meets its deadlines. We do not consider the design of the control code.

(a) (b)

Fig. 3. (a) Assumed architecture of the end system. (b) The hardware/software interface.

We assume that the communication between the different
components can be abstracted by area and time parameters.
Specifically, represents the time taken to transfer a
sample of data across the hardware-software interface, i.e.,

is the time to transfer a sample of data between nodes A
and B if nodes A and B are mapped to hardware and software,
respectively. The communication time depends on the assumed
communication model. For example, in a synchronous model,
it includes interrupt handlers in addition to the actual data-
transfer time. In the case of an asynchronous communication,
it is the time to write to a buffer. Similarly,
is the time taken to transfer a sample of data when both
nodes involved in the communication are mapped to hardware
(software). Hardware area and software code size are also
associated with each interface. Specifically, is the
hardware area required to implement the hardware end of
the hardware-software interface, and is the code size
associated with implementing the software end of the interface
(code for polling or the specific interrupt handler). Fig. 3(b)
illustrates some of the communication parameters. The GCLP
discussion in Section IV-B describes the use of these various
parameters and constraints within the partitioning process.
Mechanisms to implement an asynchronous interface between
the hardware and software have been described in [4]. In this
paper, we consider a shared bus between the modules. Note
that the hardware and software components can execute in

parallel. Last, note that other communication mechanisms can
also be incorporated within the partitioning tool.

C. Design Methodology

Fig. 4 shows our proposed design methodology for the
codesign of multifunction systems. The methodology com-
prises four main steps: 1) specification of the application
set, 2) estimation of node-level execution time and area in
hardware and software implementations, 3) hardware/software
partitioning, and 4) system synthesis.

1) Specification of the Application Set:The first step is to
specify each application in the set. As described earlier,
we assume a course-grain data-flow specification. The SDF
domain of Ptolemy is used to specify each application. The
output of this step is a DAG for each application in the set.
An implicit assumption in such a block diagram specification
is that each block corresponds directly to a node (i.e., the
granularity of partitioning). The partitioning tool maps each
node to either hardware or software; it does not break up
user-specified blocks. This approach seems reasonable for the
coarse-grain data-flow semantics assumed. Alternatively, the
applications can also be specified as DAG’s, independent of
the Ptolemy interface.

2) Estimation of Node-Level Execution Time and Area in
Hardware and Software Implementations:The next step is to
get estimates of area and execution time for each node in

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 823

Fig. 4. Design methodology for multifunction system codesign.

each application. Recall that each node could be implemented
in software on the programmable processor, in hardware as a
fixed-function hardware accelerator, or in hardware mapped to
a macrofunction module. Hence, estimates need to be obtained,
for each node, for execution time in hardware execution
time in software area when implemented in hardware

and code size when implemented in software
As mentioned earlier, we make a simplifying assumption

that the macrofunction modules are selected from a given
library of modules. Note that such a macrofunction-module
approach is quite reasonable when nodes differ slightly, i.e., in
number of iterations, data sizes, word lengths, interfaces, etc.
Although designing such a library of modules is nontrivial, this
approach holds in the wake of the increasing trend seen in the
design community toward design “reuse.” For such nodes, the
estimates of execution time of a node on such a macrofunction
module and the area of such a module are assumed to be
known from the library. As the library of such macrofunction
modules matures, the estimates can be refined.

Next, we describe methods to obtain estimates of execution
time in fixed-function hardware accelerators and software. Be-
fore we go into the details of the estimation process, we digress
briefly to comment on the accuracy of the estimation process.
The usefulness of the generated partition depends on how
accurate the estimates are; if the actual values obtained after
synthesis are very different from the estimates, the resultant
solution could either be infeasible or have an unnecessarily
large hardware area. Accuracy of the estimated area and time
values is directly proportional to the time spent on generating
the estimates; the more accurate the estimate, the longer it
takes to derive it. In the limiting case, the best estimate is
obtained after actually synthesizing the implementation. Our
philosophy in generating the estimates is to get fairly accu-
rate estimates from behavioral specifications, without going
through the entire synthesis process. This approach is similar
to the estimation methodology described in Appendix B of

[4]. The key ideas are summarized here for completeness.
Our approach assumes a block diagram description of each
application, where each block corresponds to a node in the
DAG. We assume that a C and Silage description is available
for each node. In our current implementation, the generated
Silage code for each node is fed to Hyper [5], a high-level
synthesis tool. Hyper generates estimates of execution time

and area for a hardware implementation of the
node. The hardware execution time is computed as the best
case execution time, i.e., the fastest execution time. This
corresponds to the critical path of the control-data-flow graph
associated with the node.1 The hardware area is computed by
setting the sample period for the node to be the critical path.
Note that we are not restricted to using Hyper for generating
estimates. If VHDL descriptions were available for each node
(a more reasonable assumption than Silage), synthesis tools
such as Behavioral Compiler from Synopsys could be used to
generate estimates of area and execution time. We have used
the Hyper approach to demonstrate our ideas since we had
free access to the tools, the source code, and the experts who
designed the tools.

To obtain the estimates for software execution time and
size, we first use the code-generation mechanisms of Ptolemy
to generate C code [or code for a digital signal processor
(DSP)] for each node. Next, this code is mapped to the
particular processor under consideration. The implementation
of the cosynthesis tools described in [4] assumes the 56 000
DSP from Motorola. Once assembly code is generated, the
software execution time estimates are obtained by using
the processor simulator, and code size estimates are

1In a separate work, Kalavadeet al. have addressed the problem of
“extended” partitioning [1], where the area and execution time of a node are
not single values but instead are represented as an area-delay tradeoff curve.
Such a curve represents the spectrum of implementation options for a node
within a given mapping. The extended partitioning problem is to select, in
addition to a hardware or software mapping, the appropriate implementation
for each node from such an area-delay curve.

824 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

obtained by running simple scripts on the generated code. For
the examples we present in this paper, we used an in-house
processor, and software size and execution time estimates were
available from the application developers.

Our assumption of requiring Silage (or VHDL) and C code
to be available for each node does pose some limitations on the
usability of this approach. However, these restrictions seem
less severe now (our cosynthesis framework was developed
around 1993) given the current trend in commercial system-
level system synthesis tools such as COSSAP (from Synopsys)
and SPW (from the Alta group of Cadence) to also assume a
library-based mapping approach. It has been our observation
that the set of library modules becomes increasingly extensive
over time, and it becomes more likely that such C and
Silage/VHDL descriptions exist for each node.

Note also that our partitioning methodology is not restricted
to a block-diagram-based approach. Other specification and
cosynthesis mechanisms that start with a unified description
of the application can also use our partitioning methodology,
as long as a DAG where nodes are annotated with area and
time estimates can be generated.

3) Hardware/Software Partitioning:Once the estimates of
execution time and size in hardware and software have been
obtained for each application, the partitioning tool maps and
schedules nodes in each application. Details of the partitioning
methodology are referred to Section IV. The output of the par-
titioning process is an annotated graph indicating the selected
mapping for each node and a schedule for the execution of
each application.

4) System Synthesis:Last, the annotated application graphs
are fed back into the Ptolemy framework for synthesis of the
hardware, software, and interface components. The synthesis
mechanism is described in Section V. Of course, other synthe-
sis mechanisms that start with such an annotated DAG could
be used as well.

D. Problem Definition

The multiapplication codesign problem is formally defined
as follows. Given a set of applica-
tions, where each application has a timing constraint
design an implementation that can support all the applications
from the given set. Only one application may be active at run
time, and its timing constraints should be met. The design
objective is to minimize the overall hardware area.

Our partitioning tools try to minimize the area of the
extra hardware (macrofunction modules and fixed-function
hardware accelerators) while ensuring that each application
meets timing constraints. The motivation for this is to use the
available software processor as much as possible. The parti-
tioning tool can be used in an iterative design methodology
where different processors of varying cost and performance
could be used. For each processor, the total system cost can
be computed as a sum of the costs of the processor and
the additional hardware. A design that minimizes the system
cost can be selected. As mentioned earlier, the partitioning
process is quite efficient and hence is amenable to such rapid
exploration. A limitation of our current partitioning approach

is that we are restricted to a single processor. Extending our
approach to allow multiple programmable processors in the
system is an area of future work.

Given the architecture template shown in Fig. 3 and a set
AP of applications, the codesign task consists of determining
1) the mapping of nodes, in all the applications, to either
hardware or software and 2) the schedule for the execution
of the nodes within each application. The mapping is used
to construct the overall system architecture. The schedule is
used to generate the software for each application. When a
particular application runs on the final system, it follows its
particular execution schedule.

III. RELATED WORK

The hardware/software partitioning problem for a single
application has been proved to be NP-hard [4]. The problem of
optimizing over a set of multiple applications is at least as hard
as the problem of obtaining a design for a single application.
While we are not aware of any work that directly addresses the
problem as we have defined it above, there have been several
efforts in related areas. We place these in perspective next.

The application-specific instruction processor (ASIP) syn-
thesis problem is to design a domain-specific processor by se-
lecting the optimal “instruction set” for a class of applications.
Typically, the class of applications is analyzed to find the most
commonly used instructions, and a data path and controller
for that instruction set is designed. Several bodies of research
address this problem. For instance, the optimal instruction set
selection problem is formulated as an integer linear program
in the PEAS system [6], [7]. Van Praetet al. [8] present an
interactive approach to selecting the microinstructions in the
ASIP. Other approaches include [9]–[11]. The problem we
are interested in here is to design a system-level hardware-
software architecture optimized for a class of applications.
We focus on finding commonalities between applications at
a higher level of granularity than is typically considered
when designing ASIP’s. We do not address the design of
the programmable processor itself but focus on the optimal
mapping of components of the applications to the processor
or custom hardware accelerators. Any progress in designing
ASIP’s can be used to complement the techniques we discuss
here. We comment more on this topic in the concluding
section.

Potkonjak et al. [12] address the problem of combining
several concurrent tasks onto a single application-specific
integrated circuit (ASIC) instead of designing a separate
ASIC for each task. They discuss an iterative algorithm that
combines tasks onto a single ASIC, based on their bit-width
requirements, register counts, source and destination locations,
etc. We are concerned with a different problem here, that of
selecting the best hardware or software implementation for
each node in each application such that the overall system
cost is minimized. Also, we are concerned with nodes at a
higher level of granularity.

The problem of designing systems where multiple applica-
tions run concurrently has been studied separately by Kalavade
and Mogh́e [13].

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 825

Fig. 5. Partitioning methodology for multifunction systems.

IV. PARTITIONING METHODOLOGY

The proposed methodology for the multiapplication par-
titioning problem is shown in Fig. 5. The set of specified
applications is first analyzed to extract commonality measures
across applications. In Section IV-A, we identify some mea-
sures, such as repetitions and performance-area tradeoff, which
can be used to characterize nodes across all the applications.
We also present simple methods to quantify these measures and
provide an intuitive explanation of how they can be used in the
partitioning process. The hardware-software partitioning tool
is then applied to each application. The partitioning algorithm
uses the commonality measures to bias the mappings of nodes
that are common across applications. In Section IV-C, we
describe two methods (CHOP and HOP) to partition the nodes
in the applications into hardware and software. These methods
are based on a previously developed algorithm, GCLP [1],
used to partition a single application. The GCLP algorithm is
summarized in Section IV-B.

A. Commonality Measures

In this section, we first describe methods to identify “com-
mon” nodes, i.e., nodes that are common across different
applications. Then we describe different commonality mea-
sures and methods to quantify them. These commonality
measures are based on several nodal properties.

1) Identification of Common Nodes:The set of common
nodes consists of nodes that repeat over different applications
in the set and can be implemented on the same resource. As
discussed earlier, we assume that nodes can be implemented in
three ways: software, hardware on a fixed-function accelerator,
and hardware on an existing macrofunction module.

In general, identifying structural and functional matches
across different nodes is a difficult problem. In this work, we
use a simple method as follows. The user tags all the nodes in
all the applications with a tuple:root name, parameters If
the root name and parameter values on two nodes match ex-
actly, the nodes are common and can in fact be mapped to the
same resource: either a programmable processor executing the
same function or the same fixed-function hardware accelerator.
Such a fixed-function hardware accelerator can be synthesized
using the Ptolemy mechanisms described in Section V.

If the parameters do not match, we check for an existing
macrofunction hardware module that matches with the root
name and can support both parameters. Each macrofunction

hardware module is assumed to be characterized by a root
name and a list of possible parameters. Two nodes that can
be mapped to the same macrofunction hardware module are
also said to be common and are tagged with the particular
module that can support them. An example of a partial match
is the two nodesDCT, one block and DCT, eight blocks
where DCT is the function name and the parameters specify
the number of blocks operated on for each iteration. Note that a
similar approach can also be used to incorporate macrofunction
software modules.

Once matching is done, each node is tagged with anode
type; nodes that match have the same node type. The set of
common nodes is the set of nodes that have the same node
type.

This root-name-parameter matching approach that we cur-
rently use for detecting commonality is quite simplistic. So-
phisticated techniques such as template matching can be used
to detect matches. We propose a mechanism to do this: a
functional description (such as C or Silage or VHDL code)
is assumed to be available for each node. Starting with such
a high-level description, a control-data-flow graph (CDFG) is
generated for each node using techniques commonly used in
the high-level synthesis or compiler communities. A list of
possible templates characterizing different architecture features
(such as FIR filters, infinite impulse response filters, multiply-
accumulates, etc.) is maintained. The CDFG associated with
each node is then analyzed to detect which templates are
present. This can be done using covering techniques such
as those proposed by Raoet al. [14]. Then the templates
associated with nodes can be compared. Nodes that have the
same templates are said to be common. A macrofunction
hardware module that implements such a set of templates
for common nodes can be synthesized. An alternative to the
template approach is to compare pairs of nodes to extract
regular patterns across them, as proposed by Guerraet al. [15].
Common implementations that accommodate regular patterns
can be synthesized. Note that this process can be made even
more complex by trying to look across node boundaries to
detect matching patterns. In the limiting case, such methods
to extract commonality tend to the ASIP problem that tries to
identify common “instruction patterns.”

We have taken a first step in this direction; for future work,
we intend to formalize this approach. As a starting point, we
believe that restricting to simpler approaches might increase
the practicability of our approach. In practice, often the hard-

826 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

ware/software selection is limited by available macrofunction
hardware modules. In such a scenario, allowing the user to
detect possible function matches might suffice. Note that even
if the user determines the common nodes, the actual selection
of the mapping for each application is not obvious due to
the other constraints in the problem. The partitioning tool
determines the best mapping while meeting the constraints.

One of our underlying philosophies in automated partition-
ing is to try to systematizethe design process commonly
used by designers today. We have strived to make the core
partitioning tool efficient to permit an iterative and interactive
design methodology.

2) Quantification of Commonality Measures:Once the set
of common nodes is identified, each common node is analyzed
to compute metrics that characterize its properties. We have
identified some properties and propose simple techniques for
quantifying them. In Section IV-C, we describe the use of
these metrics in the partitioning tool. The properties, their
quantification, and their intuitive meaning are discussed next.

a) Repetitions of a node (R):The repetitions of a
node are computed as the number of occurrences, across all
the applications, of nodes of the same type as the type of node

is simply the number of times nodeappears over all
the applications. The repetitions measure can be used in two
ways. A node that appears more frequently (highvalue) can
be given a priority for a custom hardware implementation. In
other words, if a node occurs many times in different applica-
tions, allocating a custom hardware area for it can be justified
since it gets reused over many applications. Alternatively, the
repetitions measure can be used to maintain consistency in
mapping; when mapping nodes with a highvalue, all its
instances can be mapped to either hardware or software.

b) Performance-area ratio of a node (PA):The perform-
ance-area ratio of a node is measured as the ratio of
the performance gain (speedup achieved by implementingin
hardware) to the area penalty to be paid for the hardware
implementation. Nodes with a higher ratio indicate a
higher benefit in selecting a hardware implementation.

c) Urgency of a node (U):The urgency of a node
is computed as the number of times a node of the same type
as that of node appears on the critical paths for the different
applications. (A critical path in the application graph is the path
that has the longest execution time.) A node that appears on the
critical path in a larger number of applications is more “urgent”
and can be given preference for a faster implementation.

d) Concurrency of a node (C):The concurrency of a
node is the number of “concurrent” instances of the node.
One way to compute the concurrency is as follows. Each
application is first scheduled assuming infinite resources for
each node type. The number of instances actually used at any
cycle is computed for each node type for each application.
The concurrency of nodeis defined as the average of these
numbers over all applications. The concurrency of a node
can influence the number of instances of the node when it
is implemented in hardware. For example, if the concurrency
for node is two, it indicates that, on average, two instances of
node type are active at any time, and hence we can include
two hardware accelerators for node type

A commonality vector is thus computed
for each node. Nodes with the same type have the same
commonality vectors. For each property, the values are then
normalized across all the nodes. The cumulative effect of
the different properties can be incorporated by combining
different measures. In Section IV-C, we show how some of
these measures are used in the partitioning process.

B. Algorithm for Partitioning Single Independent Applications

In this section, we briefly summarize the GCLP algorithm
proposed by Kalavadeet al.,which is used to partition a single
applicationindependentof other applications. For more details
on the GCLP algorithm, the reader is referred to [1]. GCLP is
the kernel of the multiapplication partitioning procedures. In
Section IV-C1 and IV-C2, we describe two modifications to
the GCLP algorithm that can be applied to the multiapplication
codesign problem.

The GCLP algorithm assumes an architecture consisting of
a programmable processor and custom hardware accelerators.
The application is assumed to be specified as a DAG, similar
to that described in Section II-A of this paper. The goal of the
GCLP algorithm is to find the mapping and schedule for all
the nodes in the given application such that the deadline is met
and the area of the nodes mapped to hardware is minimized.

The GCLP algorithm is based on list scheduling, where the
graph is traversed from a source node to the sink node and
one node is mapped in each step. In contrast to traditional
list scheduling, where a single objective function is used to
select the mapping of the node, GCLPadaptively selects
the mapping criterion from among two possible objective
functions: minimize finish time of the node or minimize the
area of the node. This criterion could change at each step
in the algorithm. The motivation for adaptively selecting the
optimization objective is as follows. Due to the constrained
nature of the mapping problem, minimizing hardware area
and meeting timing constraints often present conflicting op-
timization goals. An objective function that minimizes finish
time drives the solution toward feasibility but is likely to
be suboptimal in terms of the area. On the other hand, if a
node is always mapped such that area is minimized, the final
solution may not meet timing constraints. To overcome this
problem, the GCLP algorithm adaptively selects one of the
optimization objectives at each step, depending on which of
the two dimensions is critical at that step. This criticality is
computed via a global criticality measure That said, using
just the measure may lead to locally suboptimal mapping
decisions. Sometimes a node can have attributes that render
its mapping to either hardware or software more appropriate.
These are accommodated by quantifying the local preference
of nodes and using this value to bias the threshold used in

comparison. Fig. 6(a) summarizes this idea. Let us now
look at the details of the GCLP algorithm.

The flow of the GCLP algorithm is shown in Fig. 6(b).
represents the set of nodes in the graph. is the set

of unmapped nodes at the current step. is initialized to
During initialization, for each node a local attribute

that quantifies the preference of to a hardware or a

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 827

Fig. 6. (a) Key idea of the GCLP algorithm. (b) Flow of GCLP algorithm.

software mapping is computed. These attributes include the
area/performance ratio in different mappings, properties such
as bit manipulations and precision variance that indicate an
affinity to hardware, and factors such as the density of control
operations and memory operations that dictate an affinity to
software. The attribute for a node is computed as a convex
combination of these affinity metrics for nodeIn this paper,
we will not go into more details of these attributes.

The algorithm then maps one node per step. At the be-
ginning of each step, the global time criticality measure
is computed for that step. is a measure of how critical
time is at that step, i.e., given the nodes already mapped
so far and the required finish time of the application,
is indicative of the slack available at that instant. is
computed at each step of the algorithm as a fraction of the as
yet unmapped nodes that need to be moved from software to
hardware, given the mappings of nodes mapped so far, such
that the resultant solution is feasible. A high indicates
that time is more critical. After computing a node is
picked from among allreadynodes (nodes whose predecessors
have been mapped) using an urgency criterion. In particular,
the node on the longest path is selected in this step, as
shown in step S2) of the algorithm shown at the bottom of
the next page. The next step, S3), is to select the mapping
for the selected node As described earlier, instead of using
a fixed function to select the mapping, the GCLP algorithm
adaptivelyselects between minimizing total hardware area and
minimizing system finish time as the objective to be used to
determine the mapping of node This adaptive selection
is governed by global criticality and local preference

of the selected node, as shown in Fig. 6. The GCLP
algorithm selects the optimization objective by comparing
to a threshold. If is greater than the threshold, time is
said to be critical, and a mapping that minimizes the finish

time of the node under consideration is selected. If is
less than a threshold, a mapping that minimizes the resources
(hardware area) consumed is selected. The threshold may be
either supplied by the user or statistically determined over a
test set. In our experiments, we assume a threshold of 0.5.
Note that the measure is also a “look-ahead” measure
that tries to minimize the greediness typically associated with
serial traversal. As mentioned earlier, the local preference of
the node is quantified by and is used to bias the threshold
used in comparison. (This local preference is replaced by
the bias introduced by the commonality measures in the case
of multiapplication partitioning.)

Using the selected optimization objective, the selected node
is assigned a mapping The start time for the

execution of node is then computed using the finish times
of all of its predecessors and the communication delay (de-
pending on the relative mappings of predecessors and). This
set of start times defines the schedule for the system. The
process is repeated times over all nodes. The algorithm is
summarized on the next page.

Some of the key steps in the algorithm outlined are dis-
cussed next. After computing a node is selected for
mapping from among all ready nodes in step S2). Ready nodes
are those whose predecessors have been mapped. We use an
urgency criterion to select node i.e., is selected as the
node, from among all ready nodes, that has the longest path
to completion. Execution time values are required in order
to compute the longest path. The effective execution time
of nodes that have already been mapped is determined by
their mapping. However, the execution time is not known for
nodes that have yet to be mapped. To address this problem, we
define the effective execution time of an unmapped
node as the mean execution time of the node, assuming it
is mapped to hardware with probability and to software

828 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

with probability Here we use the notion of
as a node-invariant probability that an unmapped node will
be mapped to hardware. Once the effective execution times
are computed, the longest path is computed and nodeis
selected according to the longest path.

The mapping for node is selected in step S3). First, the ef-
fective threshold is computed by adding the local preference to
a default threshold of 0.5. is compared to this threshold. If

is greater than the threshold, time is assumed to be critical,
and hence a mapping that minimizes the finish time of node

is selected (objective 1). If is less than the threshold,
time is not that critical, and a mapping that minimizes the
system hardware area is selected (objective 2). Based on the
mapping selected, the schedule is computed in step S4). Note
that this schedule also includes the communication times. The
objective functions are as follows.

Objective 1: where software, hard-
ware (is the finish time of node on mapping

where

set of predecessors of node

finish time of predecessor

communication time between predecessor

and node

finish time of the last node assigned

to mapping m

if corresponds to hardware

execution time of node on mapping

Objective 2:
where is an

indicator function whose value is one if mappingis “ .”
Objective 1 selects a mapping that minimizes the finish

time of the node. A node can begin execution only after
all of its predecessors have finished execution and the data
has been transferred to it from its predecessors. Note that the
communication delays are taken into account; includes
the time to transfer data to this node and is dependent on
the particular communication mechanism and the number of
samples transferred. Also, a node cannot begin execution on
the software resource until the last node mapped to software
has finished execution. This is accounted for by the term
Thus, is computed for node on all mappings
The mapping that minimizes is selected as the
mapping for node

Objective 2 uses a “percentage resource consumption” mea-
sure. This measure is the ratio of the resource area of a node
(nodal area plus communication area) to the total resource
area. Recall that the area of nodein hardware and software
is and , respectively. The area takes
into account the total cost of communication (glue logic in
hardware and code in software) between nodein hard-
ware (software) and all its predecessors. For the hardware
resource, the resource area required by the node is divided
by the available hardware area while for the
software resource, the resource area is divided by the software
capacity Objective 2 thus favors software allocation as
the algorithm proceeds. Note that this step also checks to
see if the resource required for this mapping still meets the
capacity constraint (or). If objective 2 is selected as

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 829

the mapping function, then the percentage resource consumed
is computed for all mappings. The mapping that minimizes
this quantity is selected.

Note that different communication models can be accom-
modated within GCLP. In this paper, we assume a shared bus.
Exclusive access to the bus by different resources is accounted
for by modifying the function that computes the communi-
cation cost. Specifically, the bus is checked for availability
while computing the communication and finish times. This is
similar in concept to modeling sequential execution on the
programmable processor. For the implementation described in
[4], a point to point communication between hardware and
software was assumed.

Last, the GCLP algorithm has quadratic complexity in the
number of nodes. In the work reported in [1], it is shown
that the solution generated by GCLP compares favorably with
the optimal solution generated by an exact formulation using
integer programming.

C. Partitioning Multiple Applications

We next describe two methods for partitioning multiple
applications. These methods use modified versions of the
GCLP algorithm. In the first method, HOP, described in
Section IV-C1, the commonality measures are used to bias
the mapping decisions made by GCLP. In particular, if the
repetitions measure of a node is high, the node is biased
toward a hardware mapping; otherwise, the performance-area
measure is used to bias its mapping toward one that
is most suitable to that node. In the second method, CHOP,
described in Section IV-C2, the applications are ordered ac-
cording to their relative criticality and selected for partitioning
in this order. Mapping decisions made when partitioning one
application are propagated to the next application. Common
nodes are encouraged to share the same mapping, thereby
maintaining consistency of mapping across applications.

1) HOP— Hardware Bias for Common Nodes:In this
method, the partitioning algorithm is modified to incorporate
two basic factors that influence the mapping of a node when
multiple applications are considered.

1) If a node is repeated in several applications (and hence
has a high measure), it might be beneficial to bias
its mapping toward hardware. By sharing a hardware
implementation for repeated nodes, other less frequently
appearing nodes may get mapped to software, leading to
an overall reduction in hardware area.

2) If a node takes a small area, relative to all nodes in
all applications, when implemented in hardware, and if
the difference in software and hardware execution times
is high (i.e., node has a high measure), it might
be beneficial to bias the mapping of the node toward
hardware. This will free up the software resource for
nodes that might otherwise be expensive in hardware.

These two factors can be put to use when considering
the mapping of multiple applications. We define for each
node a commonality measure where

is the repetitions measure, is the performance-area
tradeoff measure, andand are user-defined weights.

is normalized over all the nodes in the application. The
measure is used to bias the threshold in the GCLP algorithm.
The procedure adopted in HOP for designing for multiple
applications is summarized as follows:

“ ”

- -

-
-

-

-
-
-

The interpretation of step S4) in procedure HOP is as
follows. For nodes with a nonzero value, the threshold
is reduced to below its default value of 0.5. The at that
step of the algorithm is compared to this modified threshold.
If the is above the threshold, a hardware mapping is
selected. By lowering the threshold with the commonality
measure, a hardware bias is introduced. If is below
the threshold, a software mapping is used. The mapping
decision for common nodes is thus made by considering the
combination of application-specific requirements (as dictated
by) as well as interapplication demands (modeled by

). Nodes that are not common across applications get
mapped in a way such that feasibility is met while still
attempting to minimize the total area.

2) CHOP—Consistency in Mapping Common Nodes:In
HOP, we used GCLP-HOP to bias common nodes toward
hardware. However, an alternative way of mapping mul-
tifunction systems is to maintain a “consistency” in the
way the common nodes are mapped. We introduce a second
variant of the GCLP algorithm that embodies this particular
design principle. The key idea is to map the applications
in a particular order and to propagate information about
the mapping decisions made. One way to select the order
of applications is to use an application criticality measure,

830 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

which indicates the relative computational complexity of each
application. The propagation of mapping decisions allows
information about mapping decisions within an application
to be sharedbetween applications. Let be the node being
considered. If a node of the same type ashas been mapped
earlier, the mapping decision for is biased in the direction
of the previous mapping. Otherwise, the mapping of node

is determined locally. The procedure used in CHOP is
summarized at the bottom of the page.

The interpretation of step S4) in procedure CHOP is as
follows. Let be the node being considered at a particular
step. If a node of the same type as nodehas been mapped
by a previously considered application, the goal is to try to
preserve that mapping for node This is accomplished by
biasing the threshold in the direction of the previous selection.
Thus, if the earlier mapping was hardware, the threshold is
lowered by the repetitions measure favoring a hardware
implementation for this node. Similarly, if a node of the same
type as node has been previously mapped to software,
the threshold is raised by the repetitions measure thus
favoring a software implementation. Note that the mapping of
node is not hard codedto the mapping selected previously;
instead, it is “biased” toward that mapping. By lowering the
threshold for a node that has a previous mapping in hardware,
its chances of getting mapped to hardware are increased.
However, the state of the current application, as reflected by
the time criticality measure is also considered. GC is
compared to the modified threshold, and if it is greater than
the threshold, only then is a hardware mapping selected. Thus,
the mapping of common nodes is biased toward a mapping that
maintains consistency across all applications while making

sure that the application-specific constraints are also taken
into consideration. If no node of the type of nodehas been
mapped before, the measure is used to select its mapping.
In this case, the measure tries to select the best possible
mapping for node considering the effect of the current
application only. In particular, if is high, it indicates a high
benefit of a hardware mapping. In such a case, the threshold
is lowered to favor a hardware mapping. Of course, if is
low enough, then a software mapping gets selected.

While selecting the applications, the most critical appli-
cation (highest) is considered first. The nodes in this
application are mapped in a way that best meets the timing
constraints. Other nodes then follow the mapping decisions
made by the more critical applications, unless their local pref-
erence strongly dictates otherwise. We are also experimenting
with other orderings of applications.

Once all the nodes in each application have been mapped to
either hardware or software, using either of the methodologies
described in the previous section, a postmapping optimization
step may be applied. This involves swapping some nodes from
hardware to software or applying user-controlled fine tuning.

V. SYSTEM SYNTHESIS

Once the mapping and schedule have been determined, the
final system is to be synthesized. Fig. 7 shows the system-
synthesis mechanism.

The hardware synthesis process assumes a hierarchical ap-
proach, where a layout is first generated for each node mapped
to a fixed-function hardware accelerator, and these layout
modules, along with the preexisting macrofunction modules,

-
-

-
-

-
-

-
-

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 831

Fig. 7. System-synthesis procedure.

are put together to generate a netlist for the complete system.
As mentioned earlier, we do not synthesize macrofunction
modules but assume that these are selected from a preexisting
set of modules. However, the method outlined in Section IV-
A1 can be used to synthesize the macrofunction modules.

The layout for a fixed-function implementation is obtained
by using a combination of preexisting tools such as Ptolemy
[2] and Hyper [5]. In particular, Silage2 code is first generated
for the node using Ptolemy. This Silage code is then passed
through Hyper to synthesize the actual layout. The layouts
are then combined, and a controller is generated for each
application using the generated schedule.

The software-synthesis process involves generating code
for each application. A two-tiered approach, similar to the
hardware-synthesis process, is assumed. C code is generated
for each node using the predefined modules in Ptolemy.
These code modules are then stitched together in the sequence
dictated by the schedule (generated by the partitioning tool) to
obtain a single code file for each application.

At run time, the software modules corresponding to the
selected application are loaded in, and the hardware for the
selected application is activated by the controller for that
application. This synthesis mechanism has been implemented
as part of the Ptolemy environment. More details on this
approach can be found in [3] and [4].

VI. NUMERICAL RESULTS

In this section, we report the results obtained for designing
an implementation for a system running a set of video appli-

2Silage is a high-level functional language specifically designed to describe
DSP applications. Several research and commercial synthesis systems use
Silage as the specification language [for instance, Hyper from the University
of California, Berkeley, and DSPStation from Frontier Design, Inc. (previously
part of Mentor Graphics)]. The methodology is not restricted to using Silage
and Hyper; VHDL and other synthesis tools can be used as well.

cations. In Section VI-A, we describe the relevant details of
the applications, architecture, and node metrics. In Section VI-
B, we present the solution obtained when each application
is consideredindependently. The solutions obtained by using
HOP and CHOP are discussed in Sections VI-C and VI-D,
respectively. The solutions obtained by using these are found
to be superior to (have smaller area than) the solution obtained
when each application is considered independently. We have
implemented HOP and CHOP and incorporated them into the
basic GCLP algorithm. Both HOP and CHOP are efficient
algorithms and have a quadratic complexity in the number of
nodes. Each run through the partitioning algorithm takes less
than one second of CPU time on a Sparc20.

A. Application Set, System Architecture, and Node Metrics

1) Application Set:To illustrate some of the concepts in-
troduced here, we consider the application set consisting of:

• MPEG2 video encode (M2E);

• H.261 decode and encode (H);

• MPEG2 video decode (M2D).

Such a mix is representative of the different functions
running on an add-on card in a laptop PC, where the user may
be watching a movie (MPEG2 video decode), or conducting a
video conference (H.261 encode/decode), or transmitting video
data (MPEG2 video encode). Suppose that we want to design
an implementation that runs this set of applications, such that
any one application runs at a given time. Fig. 8 shows the
graphs for the three applications. One iteration through a graph
corresponds to the processing of a macroblock of data3 in
that application. The latency constraint on the graph specifies

3A macroblock is a basic data type used in video encoding/decoding. An
image is typically divided into blocks of pixels, where a block has 8� 8
pixels, and a macroblock consists of four blocks. The number of macroblocks
per image depends on the frame size.

832 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

Fig. 8. Application graphs (a) MPEG2 video encode, (b) MPEG2 video decode, (c) H.261 video encode/decode.

TABLE I
APPLICATION SET

the maximum time available to process one iteration. This is
computed from the frame size and rate. Table I summarizes
the details of the applications in the application mix, their
timing constraints, and the application criticality. Note that
the MPEG2 encoder and decoder operate at a larger frame
size than the H.261 codec. The application criticality for
application is computed as the ratio where
is the sum of the software execution times for all nodesin
application and is the deadline for application

2) System Architecture:We assume a system architecture
consisting of a single programmable processor, multiple fixed-
function accelerators, and coprocessors attached to the proces-
sor. The programmable processor can implement all the nodes
(the software implementation). The coprocessor represents a
special case of the macrofunction hardware modules described
earlier. The coprocessor can implement some of the nodes.
We assume a single-instruction multiple-data vector coproces-
sor that can implement the following functions: DCT/IDCT,
Quantizer/IQuantizer, frame add/sub, motion compensation,
and loop filter. The hardware accelerators implement specific
functionality. We assume hardware accelerators for nodes such
as a motion estimator or a variable length encoder. Table II
summarizes the different resource types available. Fig. 9 sum-
marizes the system architecture. The end system contains one
programmable processor and several instances of the coproces-

Fig. 9. System architecture assumed in experiments.

sor and hardware accelerators. The hardware accelerators are
connected to the processor via a shared bus. The coprocessor is
closely coupled to the processor. The communication between
different resources is abstracted into communication delays,
which are used by the partitioning algorithm.

Different system implementations are quantified by a “sys-
tem cost,” which is the total hardware area required in addition
to the programmable processor. The partitioning algorithm
determines the number of coprocessors and the number and
types of hardware accelerators, as well as a mapping of
nodes in all the applications to these resources (programmable
processor, coprocessors, and hardware accelerators) such that
each application meets its timing constraint and the overall
system cost is minimal.

3) Node Metrics: Software execution times for nodes are
measured by a detailed simulation on a media processor

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 833

TABLE II
RESOURCETYPES IN THE SYSTEM ARCHITECTURE. HA: FIXED-FUNCTION HARDWARE ACCELERATOR; CP: MACROFUNCTION HARDWARE MODULE

TABLE III
NODE TYPES, R AND PA MEASURES, AND IMPLEMENTATION OPTIONS

developed in our lab. Software code size for each node is
also available. Hardware execution times and areas for nodes
(for both, fixed-function accelerators and the coprocessor)
are abstracted from an actual implementation of a video-
conferencing system developed in our lab. Note that several
nodes are repeated over different applications (e.g., inverse
quantizer appears four times; the motion estimator appears
two times). Table III summarizes the repetitions and
performance/area measures for the different types of
nodes in the application mix. It also lists the implementation
options for each node type; the particular implementation for
each node within different applications is selected by the
partitioning process.

With this background, we are now ready to report the
solutions obtained by different methods. In Section VI-B, the
solution obtained by considering each application indepen-
dently, without considering the other applications in the set,
is reported (i.e., using vanilla GCLP). Results with HOP and
CHOP are reported in Sections VI-C and VI-D, respectively.
It is assumed that each of these solutions uses a single
programmable processor. The results are tabulated as follows.
For each application in the set, the hardware resources used

in addition to the processor are reported. The corresponding
system area for each application is the sum of the areas of the
hardware resources. Note also that each solution represents
a feasible solution for each application. The finish time (and
schedule) calculations take into account the time to transfer
data across the interface, in addition to the execution times in
different implementations. Specifically, since a shared bus is
assumed, exclusive access to the bus by different resources
is accounted for in the calculations. Last, the row labeled
“Set” reports the union of the hardware resources needed for
the application set and the total system area for the set of
applications.

B. Experiment 1: Independent Mapping

We first run each application independently through the
original GCLP algorithm. This represents a naive approach,
where each application is designed separately without taking
into consideration any of the features of the multiple applica-
tions in the set. Table IV summarizes the resultant hardware
resources used for each application and the total system area.
Note that application H requires two instances of the resource

834 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

TABLE IV
RESULTS OF EXPERIMENT 1

TABLE V
RESULTS OF EXPERIMENT 2

CP. The total area for the mix is computed by summing the
areas of the union of the hardware resources used in the three
applications. This represents the total system area required to
implement the multifunction system.

C. Experiment 2: HOP

We next apply HOP, which uses GCLP-HOP, where the
threshold is modified with a linear combination of theand

measures (recall thatthreshold where
We present three sets of results with

set to (1, 0), (0, 1), and (1, 1), respectively. Table V
summarizes the resultant hardware resources used for each
application and the total system area for the three cases.

1) Observations:This method uses the principle of moving
nodes with high repetitions to hardware. In case 2A, it was
found that nodes idct, mc, sub, and dct were mapped to hard-
ware (since they had higher repetitions) as against software in
experiment 1. This was achieved by changing the threshold
values when mapping these nodes. As a consequence, nodes
with lower repetitions such as vld and sink3 got mapped to
software. This resulted in a lowered system area. In case 2B,
the measures do not appear to help in improving the
solution over case 1, since the PA measures have the same

effect as in considering local preferences of nodes. In case
2C, the combined effect of and is the same as the
effect of alone in case 2A.Thus, the repetitions measure
seems to help to reduce the system area. For this example, the
solution obtained from HOP is 8% smaller than that obtained
by considering applications independently.

D. Experiment 3: CHOP

We now apply CHOP, where the applications are considered
in a specific order and mapping state is maintained between
applications. The idea behind this algorithm is to maintain
consistency when mapping nodes of the same type. The appli-
cations are considered in the order of decreasing application
criticality (i.e., sequence M2E-H-M2D). Table VI summarizes
the resultant hardware resources used for each application and
the total system area.

1) Observations:CHOP gives a much better solution than
that obtained in either of the first two experiments. In par-
ticular, the solution is 38% smaller than that obtained when
applications are considered independently. The results ob-
tained so far indicate that CHOP is superior to HOP. This may
be attributed to the fact that CHOP incorporates some of the
design principles in HOP and also takes the consistency into

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 835

(a) (b)

Fig. 10. Algorithm trace for MPEG2 decode (M2D). (a) M2D in experiment 1. (b) M2D in experiment 3.

TABLE VI
RESULTS OF EXPERIMENT 3

Application Hardware Resources Used System Cost

M2E CP, HA1, HA2, HA8 103

H CP, HA1, HA2, HA4, HA5, HA8,
HA9, HA11

139

M2D CP 65

Set
CP, HA1, HA2, HA4, HA5, HA8,
HA9, HA11

139

consideration. We also found that considering the applications
in the order of decreasing criticality gives the best solution.
This is attributed to the effect that by giving preference to the
more critical application first, a better overall solution can be
obtained.

E. Algorithm Trace

To give a better insight into the working of the algorithm,
a trace of the algorithm flow is shown in Fig. 10 for the
M2D application. The graph plots the algorithm step on the
axis and the and threshold on the axis. The mappings
of nodes are as shown. Fig. 10(a) shows the flow when the
application is mapped independently, as in experiment 1.
Fig. 10(b) shows the flow when the application is mapped
using CHOP. In this case, this application is considered last.

In Fig. 10(a), at the first two steps the is higher than the
threshold and a hardware mapping is selected. In Fig. 10(b),
the threshold is raised in the first two steps, biasing the
node toward software. This happens because these two nodes
have been mapped to software by the applications considered
previously. After the first two nodes get mapped to software,
the next two nodes (iquant, idct) get biased toward hardware.
This shows how the changed threshold helps to change the
mappings. Also observe that the solution for M2D by itself
is worse than in experiment 1. Specifically, when considered
independently, special hardware accelerators were used for this
application. Now, due to the bias, the coprocessor is used.
However, the advantage is a reduced overall system cost since
the same coprocessor is used in all applications.

Fig. 11. Comparing hardware area for each application and for the complete
set for the three experiments.

F. Comparing the Three Experiments

Fig. 11 summarizes the results obtained from the three
experiments. For each experiment, the hardware area for each
application and total system area for the set of applications
is plotted. The CHOP method seems to give the best solu-
tion. Note that accepting a suboptimal solution for M2D in
experiment 3 leads to an overall better system solution.

When the solutions from experiments 1 and 3 were com-
pared, we found that there was not much consistency when
mapping repeated nodes. In experiment 1, for example, of
the four instances of the node “iquant,” two were mapped to
hardware and two to software. Overall, eight of the repeated
nodes had mapping inconsistencies. In contrast, by using
CHOP in experiment 3, only one repeated node had different
implementations in different applications. This happened be-
cause the local and timing constraints had an overriding effect.

VII. CONCLUSION

We have formulated, as a codesign problem, the design and
synthesis of an efficient hardware-software implementation for
an embedded system that runs a prespecified set of applica-

836 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

tions. The goal is to design an implementation that can support
all the applications from the given set. Any one application
may be active at run time, and its timing constraints should
be met. The design objective is to minimize the overall area
of the system.

Although this problem can be viewed as one that involves
an ASIP design, we have intentionally formulated the problem
in a manner that avoids automatic processor design. Instead,
we assume that the processor core and some macrofunction
hardware modules are available. Further, the applications are
assumed to be specified at a “coarse” level of granularity.
These assumptions have been made with a view to reducing
the complexity of the problem while still allowing for solutions
that are useful in practice.

We presented two methods to solve the problem. The key
idea is to analyze the entire set of applications to extract
commonalities across different nodes in different applications.
We identified several measures that characterize the nodes and
defined ways to quantify them. These measures are used to
bias the mapping of a node. In general, the mapping decision
for common nodes is made by considering the combination
of application-specific requirements (as dictated by the global
criticality within the application) as well as interapplication
demands (modeled by the commonality measures). Nodes that
are not common across applications get mapped in a way such
that feasibility is met while still attempting to minimize the
total area. In particular, we presented two methods to partition
such application sets. In the first method (HOP), nodes that are
repeated more often across different applications are biased
toward hardware so as to improve the utilization of the spe-
cialized hardware accelerators. For the example considered, it
was found that this method reduces the overall system area by
8% when compared to the solution obtained when applications
are considered independently. In the second method (CHOP),
applications are considered in a specific order for partitioning,
dictated by the relative criticality of applications. Mapping
decisions made in one application are shared with the other
applications in an attempt to maintain consistency in mapping
common nodes. When mapping a node type for the first time,
its measure is used to select its mapping. In this way, when
the node is being considered for the first time, the best possible
mapping is selected for the node, considering the effect of the
current application only. Based on the experiments carried out
so far, this method appears to be superior to the first method
(the resultant solution is 38% smaller). This is attributed to the
fact that CHOP incorporates some of the design principles in
HOP and also takes the consistency into consideration.

ACKNOWLEDGMENT

The authors gratefully acknowledge P. Moghe for several
valuable discussions on the algorithmic issues as well as for
his feedback on this paper. They also thank the anonymous
referees for insightful feedback on this paper.

REFERENCES

[1] A. Kalavade and E. A. Lee, “The extended partitioning problem:
Hardware/software mapping, scheduling, and implementation-bin
selection,” J. Design Automat. Embedded Syst., vol. 2, no. 2, pp.

226–163, Mar. 1997. [Online]. Available WWW: http://www.bell-
labs.com/user/kalavade/papers/pdf/daem-partitioning.pdf.

[2] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,”Int.
J. Comput. Simulation, vol. 4, pp. 155–182, Apr. 1994.

[3] A. Kalavade and E. A. Lee, “A hardware/software codesign methodol-
ogy for DSP applications,”IEEE Design Test Comput. Mag., pp. 16–28,
Sept. 1993.

[4] A. Kalavade, “System-level codesign of mixed hardware-software sys-
tems,” Ph.D. dissertation, University of California, Berkeley, CA, Sept.
1995.

[5] J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping
of datapath-intensive architectures,”IEEE Design Test Comput. Mag.,
pp. 40–51, June 1991.

[6] J. Sato, A. Y. Alomary, Y. Honma, and T. Nakata, “PEAS-I: A
hardware/software codesign system for ASIP development,”IEICE
Trans. Fundamentals Electron., Commun. Comput. Sci., vol. E77-A, no.
3, pp. 483–91, Mar. 1994.

[7] N. Ngoc, M. Imai, A. Shiomi, and N. Hikichi, “A hardware/software
partitioning algorithm for designing pipelined ASIP’s with least gate
counts,” inProc. 33rd DAC, June 1996, pp. 527–532.

[8] J. Van Praet, G. Goossens, D. Lanneer, and D. H De Man, “Instruction
set definition and instruction selection for ASIP’s,” inProc. 7th Int.
Symp. High-Level Synthesis, Niagara-on-the-Lake, Canada, 1994, pp.
11–16.

[9] H. Ing-Jer and A. M. Despain, “Generating instruction sets and microar-
chitectures from applications,” inProc. ICCAD 94, pp. 391–396.

[10] P. Paulin, C. Liem, T. May, and S. Sutarwala, “DSP design tool
requirements for embedded systems: A telecommunications industrial
perspective,”J. VLSI Signal Process., vol. 9, no. 1/2, pp. 23–47, Jan.
1995.

[11] W. Zhao and C. A. Papachristou, “Synthesis of reusable DSP cores
based on multiple behaviors,” inProc. ICCAD 96, pp. 103–109.

[12] M. Potkonjak and W. Wolf, “Cost optimization in ASIC implemen-
tation of periodic hard-real time systems using behavioral synthesis
techniques,” inProc. ICCAD 95, pp. 446–451.

[13] A. Kalavade and P. Moghe, “A tool for performance estimation of
networked embedded systems,” inProc. DAC, June 1998, pp. 257–262.

[14] D. Rao and F. Kurdahi, “Partitioning by regularity extraction,” inProc.
29th DAC, 1992, pp. 235–238.

[15] L. Guerra, M. Potkonjak, and J. Rabaey, “System-level design guidance
using algorithm properties,”VLSI Signal Processing VII, J. Rabaey, P.
M. Chau, and J. Eldon, Eds. New York: IEEE Press, 1994.

Asawaree Kalavade received the B.E. degree in
electronics and telecommunications engineering
from the University of Poona, India, in 1989 and
the M.S. and Ph.D. degrees in electrical engineering
from the University of California (UC), Berkeley,
in 1991 and 1995, respectively.

She is a Member of Technical Staff in the Net-
worked Multimedia Systems Research Department,
Bell Labs, Murray Hill, NJ. Her current research
interests include performance estimation and rapid
prototyping tools for the system-level design of

networked embedded systems. She previously was with the DSP and VLSI
Systems Research Department, Bell Labs, where she led a team of researchers
working on the design and implementation of tools for the design of software
for a single-chip multiprocessor DSP. Her contributions include defining
the software architecture of the system, the design and implementation of
a multiprocessor real-time kernel, and the design of a static scheduling
framework. She also has developed a fast analytical performance-estimation
framework called AsaP. AsaP has been used for the design of networked
embedded systems as well as for quantifying the impact of different run-time
scheduling policies on multimedia end systems. Her doctoral research focused
on several aspects of hardware/software codesign (including partitioning,
cosynthesis, and cosimulation). She was part of the Ptolemy project group
at Berkeley. She is the author of numerous papers and has consulted for
Berkeley Design Technology, Inc.

Dr. Kalavade received the Best Student Award for academic excellence
(College of Engineering, Poona) and the Dora Garibaldi Fellowship (UC
Berkeley).

KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 837

P. A. Subrahmanyam (M’84–SM’96–F’97) is a
Consulting Professor in the Computer System Lab-
oratory at Stanford University, Stanford, CA. He
was with Bell Laboratories Research, most recently
involved with the design of the software/hardware
architecture of multiprocessor-based systems-on-a-
chip for multimedia and wireless applications. His
current work relates to 1) the design of, and the
design methodology and tools for, a new generation
of embedded/networked information appliances and
systems on a chip and 2) ways to leverage commu-

nication (intranet/internet) frameworks in the design and deployment of these
applicances. His research interests span various aspects of computer-aided
design, software/hardware architecture, formal methods, hardware-software
codesign, and embedded system design. He has authored/coauthored/edited
more than four books on formal methods of very-large-scale-integration design
and multimedia systems and has authored/coauthored more than 100 journal
and conference papers. He has presented several colloquia, invited technical
talks, and tutorials at universities, research laboratories, and conferences
worldwide and has chaired/served on various technical/conference/National
Science Foundation program committees.

Dr. Subrahmanyam has received both the Outstanding Paper Award and
Outstanding Presentation Award at ICCD.

