IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998 819

Hardware/Software Partitioning
for Multifunction Systems

Asawaree Kalavade and P. A. Subrahmanyasilow, IEEE

Abstract—We are interested in optimizing the design of mul- I. INTRODUCTION

tifunction embedded systems such as multistandard audio/video . .

codecs and multisystem phones. Such systems run a prespecified HE hardwa_re'SOftware code_S|gn problgm has received a

set of applications, and any “one” of the applications is selected lot of attention recently. Typical efforts in the hardware-

at a run time, depending on system parameters. Our goal is to software codesign for embedded systems assume that the

develop a methodology for the efficient design of such systems. gystem supports a single application. Thus, the goal is to find
A key observation underlying our method is that it may not o hegt hardware-software implementation foparticular

be efficient to design for each application separately. This is L. . .

attributed to two factors. First, considering each application application, say, a video encoder or a graphics controller.

in isolation can lead to application-specific decisions that do However, there is a growing class of embedded systems that

not necessarily lead to the best overall system solution. Second,needs to execute set of applicationsather than just a single

these applications typically tend to have several commonalities gpplication. Such systems fall into two broad categories.

among them, and considering applications independently may
lead to inconsistent mappings of common tasks in different
applications. Our approach is to optimize jointly across the set
of applications while ensuring that each application itself meets
its timing constraints.

Based on these guiding principles, we formulate, as a codesign
problem, the design and synthesis of an efficient hardware-
software implementation for a multifunction embedded system.
The first step in our methodology is to identify nodes that
represent similar functionality across different applications. Such
“common” nodes are characterized by several metrics such as
their repetitions, urgency, concurrency, and performance/area
tradeoff. These metrics are quantified and used by a hard-
ware/software partitioning tool to influence hardware/software
mapping decisions. The idea behind this is to bias common tasks
toward the same resource as far as possible while also considering
preferences and timing constraints local to each application.
Further, relative criticality of applications is also considered, and
the mapping decisions in more critical applications are allowed to
influence those in less critical applications. We demonstrate how
this is achieved by modifying an existing partitioning algorithm
(GCLP) used to partition single-function systems. Our modified
algorithm considers global preferences across the application set
as well as the preference of each individual application to generate
an efficient overall solution while ensuring that timing constraints
of each application are met. The overall result of the system-level
partitioning process is 1) a hardware or software mapping and
2) a schedule for execution for each node within the application

1) Systems that execute multiple applications concurrently,
e.g., set-top boxes with concurrent applications like
audio, video, and Web browsing.

2) Multifunction systems that support multiple functions
or applications, of which only one is executed at any
instant. Consider, for example, a multistandard video
codec that supports MPEG2, H.261, and JPEG algo-
rithms. Depending on whether the user is watching a
movie or conducting a video conference, any one of
these applications would run at a given time. Such
multifunction systems offer alternatives between vari-
ous functionalities—the specific alternative is typically
selected at run time. Another example is a multisystem
cellular phone that supports time division multiple ac-
cess, code division multiple access (CDMA), and global
system for mobility, only one of which is active at a
given time, depending on the area of usage. A third
example is a multiprotocol data-transmission system
that handles different communication protocols such as
Ethernet, v.34, etc.

In this paper, we focus on the design of systems that

belong to the second category. We refer to such systems as

set. On an example set consisting of three video applications, wemultifunctionsystems. Note that we use the terms “function”
show that the solution obtained by the use of our method is 38% and “application” interchangeably.

smaller than that obtained when each application is considered
independently.

Due to time-to-market pressures, as well as the inherent suit-

ability of some parts of the applications to either hardware or

Index Terms— Hardware-software codesign, hardware/soft- software, it is quite common for such multifunction embedded
ware partitioning, multifunction systems, system-level design, systems to have mixed hardware-software implementations.
video encode/decode. Our belief is that such systems can be designed efficiently if

they are optimized across the set of applications. That is, the
hardware/software partitioning decisions for each application

Manuscript received January 8, 1998; revised February 12, 1998. This paBE‘P _be_ mad_e by considering th.e impact _or? and of OJ.[her
was recommended by Associate Editor G. Borriello. applications in the set, and not just the timing constraints

A. Kalavade is with Bell Labs, Murray Hill, NJ 07974 USA. of the application under consideration. Optimizing the im-

P. A. Subrahmanyam is with the Computer System Laboratory, Stanfor ementation for each application independently often leads
University, Stanford, CA 94305 USA. p pp p y

Publisher Item Identifier S 0278-0070(98)06769-4. to application-specific implementation decisions that do not

0278-0070/98$10.001 1998 IEEE



820 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

necessarily yield the best overall cost-performance results. Foe less common nodes may get mapped to software, thereby
example, focusing on an individual application may lead toraducing the overall hardware area and reusing the hardware
decision to use a specialized (but not very reusable) hardwagsource more efficiently across all applications. Note that the
module, whereas investing the same or comparable areacitmonality measures are used to bias the mappings—not to
a programmable processor core may yield a module withaasignthe mappings. In other words, commonality measures
much higher degree of reuse across different applicatiomsdicate a preference for a mapping, based on the other
Also, a joint consideration makes it possible to exploit thapplications in the set, but the final mapping decision is
slack in one application and allow a “critical” application to benade by the partitioning tool. Specifically, the partitioning
implemented more efficiently, thereby improving the overadllgorithm takes into account the demands of the application
solution. Further, since the applications in the mix are oftamder consideration as well as the bias introduced by the other
related, there are often several commonalities between #gplications in the set, and attempts to generate a solution that
applications. For example, a discrete cosine transform (DCmijnimizes hardware area while meeting timing constraints for
function may occur in several video applications. When applirat application. This use of bias is a subtle point. GCLP is a
cations are considered independently, their implementatiagsod vehicle to express bias, as we shall see in Section 1V-B.
could be inconsistent. Thus, a hardware implementation mayThe second method for multifunction partitioning, called
be selected for the DCT in one application while a softwa@nsistency and hardware oriented partitioning (CHOP) tries
implementation may be selected in the other application. Far incorporate the consistency requirement mentioned earlier.
these reasons, we believe that, when designing for a multidp-this case, the key idea is to use application criticality to
plication set, it is important to consider all the applicationsfluence the order in which applications are considered for
in the set simultaneously rather than design for individuahapping, as well as to propagate mapping decisions across
applications. Our objective in this paper is to describe applications. In other words, if a node of the same type
methodology based on this belief and to demonstrate its payaff the node being considered in the current application has
for concrete applications. been mapped earlier by some other application, the mapping

Toward this end, we formulate a codesign problem fatecision for the node in the current application is biased in the
the design and synthesis of an efficient hardware-softwaligection of the previous mapping. When the node is consid-
implementation for a multifunction embedded system. Wered for the first time, its performance/area measures are used
assume that each application in the system has real-time ctinimake the decision local to that application. The intuition
straints. The system-level design problem has two constitudretre is to give preference to a more “critical” application, and
subproblems: 1) hardware/software partitioning, which is titee mapping decisions made for this application are allowed
problem of mapping and scheduling each of the componemsinfluence mappings of other not-so-critical applications con-
in all of the applications in the given set, and 2) synthesis sfdered subsequently. For example, consider a low-criticality
the hardware, software, and interface components for all thpplication with a large deadline. Suppose that a riadehis
applications in the given set. In this paper, we refer to thapplication can be implemented in two different feasible ways
system-level design problem as thmultiapplication codesign A and B, with A giving a slightly better solution for this ap-
problem While our paper focuses primarily on the partitioninglication. Also say that a node of the same type as riodas
problem, we also touch upon the synthesis problem. mapped to implementatio® by a more critical application.

Our approach to solving the partitioning problem is tén this case, the mapping of nodean be set td3 instead of
modify traditional partitioning approaches so as to incorporatieveloping two different implementations for nodeThus,
the unique features of multifunction systems. We begin by as-suboptimal solution for one application may be selected
suming that each application is specified by a directed acyciic order to get a better overall solution. Such an approach
graph (DAG) where the nodes represent computations iefgreedy. However, by ranking the applications in the order
“coarse” granularity. This level of granularity could represengf their importance, the greediness is applied in a controlled
say, a DCT on a block of pixels. Nodes that are common acrasgnner. It is also possible for the user to go back and change
applications are identified based on their functionality andappings in applications considered earlier. Subsequent map-
parameters. The common nodes are characterized by sevprags can be recomputed by applying the partitioning tool.
metrics (called commonality measures) like their repetitionSjnce the partitioning algorithm is quite efficient (quadratic in
urgency, concurrency, performance/area tradeoff, etc. Applithe number of nodes), such an exploration is easily possible.
tions are ordered according to their relative criticality. These Note that the partitioning process computes not just the
metrics are used by the partitioning tool to make partitioningapping but a schedule for the execution of each application as
decisions jointly across different applications. We proposeell. Once the partitioning process is finished, synthesis tools
two specific algorithms for partitioning multifunction systemsare used to generate the hardware and software components
These methods modify GCLP, an algorithm for partitioning for each application. Our synthesis approach is based on
single application, developed by Kalavaeeal. [1]. cosynthesis tools developed by Kalavadeal. within the

In the first method for multifunction partitioning, calledPtolemy design environment [2]. There are still some issues
hardware-oriented partitioning (HOP), the mapping of conthat need to be solved in the context of synthesis, which we
mon nodes is biased toward a hardware implementation. Tinention in Section V.
commonality measures are used to determine this bias. The inThe rest of this paper is organized as follows. In Section II,
tuition is that by biasing the common nodes toward hardwamge define the multiapplication codesign problem in more



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 821

detail and describe the assumed specification semantics ar MPEG audio pneode

the architectural model. The overall methodology is describec | Outpt
in Section II-C. In Section lll, we discuss some of the re- - aubband filler | B gcalor a-:"uumr

lated work in this area. In Section IV, we describe the two t ' v

algorithms, HOP and CHOP. The hardware/software cosyn:

thesis approach is described in Section V. In Section VI, A peycho-acoustic medel LEa

we demonstrate the use of the proposed algorithms witt -

the help of an example application set consisting of three Fn:;ndl;irtl::rrtngﬂ-ﬂﬂm

video applications. We compare the total system area obtainea
when each application is considered independently to the tdfél 1. Specifying a single application. Note the granularity of nodes and

. . . deadline constraint.
system area obtained by applying the two proposed algorlthrwg.
The resultant solution is shown to be 8% smaller with HOP
and 38% smaller with CHOP. analysis of the graph. A limitation of this approach is that
control operations are assumed to be either encapsulated within
nodes of the DAG or flattened out. Our approach is to try to
optimize the data-flow parts of the designs across multiple
applications. An area of future work is in the design of mixed

Il. PROBLEM DEFINITION AND CODESIGN METHODOLOGY

A. Specification of Applications control-data-flow systems.
We are interested in the codesign of multifunction systems,Fig- 1 shows the specification of an application. Fig. 2
where, given a setlP = {A;, Ay, - - -, Ay} of k applications, shows an end system that supports a set of multiple ap-

only one of these applications is active at a given timlications. Our objective is to optimize the design of an

The particular application running at a given time is selectdgiPlementation that supports all of the applications, such
at run time, either determined by the user by selectingt@at each application when selected to run meets its timing
certain application (such as selecting between MPEG2 decé@@straints. The design objective is to minimize the cost of
or H.261 in a video codec, depending on whether the ud8e complete system supporting all the applications in the set.
is watching a movie or conducting a video conference, re-

spectively) or determined automatically by system parametdt¥s Architecture Specification

(such as automatically shifting from CDMA to Advanced Before we proceed with a discussion of the design method-
Mobile Phone System (AMPS) in a multimode cellular phonglogy, we summarize the assumed system architecture. The

when the area of use changes). To simplify the problem, wenhbedded system is assumed to consist of three types of
do not consider the design of the control code that seleg¢tsources:

the application at run time. We focus on the design of an 1y 4 gingle programmable processor core that executes the

implementation that supports the set of applications such * gg¢vare component of the nodes mapped to software:
that any one may be active at a given time and the active . . ’
2) a set offixed-function hardware acceleratorsach of

application meets its timing constraints. hich is desianed f inale function in hard
We consider applications that have a periodic repetitive which 1s designed for a singie function inhardware,
e.g., motion estimation;

behavior with fixed timing constraints. One iteration through
the applicationA4; is assumed to be specified as a DAG 3) macrofunction hardware modulesach of which sup-

(@ = (N, E)), where nodesN specify computations and ports a closely related class of tasks differing in pa-
edgesE specify data and control precedences between nodes. rameters or interfaces, e.g., a filter module with pro-
Each edge, is also assumed to be annotated by the number ~grammable taps that supports different FIR filters.

of data samples communicated between nddesid/. Each Another example of a macrofunction hardware module is a
application 4; has a timing constraint that specifies theoprocessor optimized for vector operations that supports DCT
maximum allowable timeD; for executing one iteration of and inverse (I) DCT.

the application. The DAG can be generated from data-flowIn this paper, we assume that a fixed-function hardware
descriptions, such as in the synchronous data-flow (SD&Qcelerator can be synthesized for any node. We describe
domain of Ptolemy [2]. Note that an SDF specification supnechanisms to estimate the area and size of such accelera-
ports iterations (where the number of iterations is knowtors in Section II-C and describe methods to synthesize an
at compile time), delays, hierarchy, feedback, and multiraiplementation for them in Section V. We also assume that
operations (multirate graphs are typically translated to a DAfBe macrofunction hardware modules, on the other hand, are
by unfolding). The nodes of the DAG are at a “coarse” level cfelected from a list ofivailable modules. In Section IV-A1,
granularity; for instance, typical nodes might include a DCWwe propose a method that may be used to design such a
finite impulse response (FIR) filter, or quantizer. Although thisiodule, but we have not implemented this method.

model of specification limits the class of applications that can The end system is also assumed to be constrained by the
be described, we have found that a fairly large number amount of memory availablelS (hence restricting the soft-
continuous media applications such as audio/video encodare size possible) and the maximum hardware area possible
decode can be described in this model. The benefit of thidd (based on packing constraints, for example). Fig. 3(a)
constrained model is that it permits a static (compile-timashows the architecture of the embedded system.



822 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

| embedded end-system
appbcation A1 [MPEG awdia)

L] -I-‘--‘ -h' s

automats I ;
rmada-change 'am_l'm"m AE_':LFﬁ':'
diglection " * | He e
caontrol code application A3 (ADPGM|
w r
o *
I i
Uger salaction .
application Ad [ZEM)
salacts the apphcation . " ¥ -
active at run-ime T

sel ol audio applications
AP = (A, A, Ay, Ayl

Fig. 2. An end system supporting a set of audio applications. The control code selects the application active at run time. We focus on the design of an
implementation that supports all the applications in the set such that each meets its deadlines. We do not consider the design of the control code.

perogramenable furc A | e e
PROCESSOR  Prooessar NN PG, preGHERGT
CORT [ ] ¥ E¥K |
:5'.:rl'"d.| .
SCTH R e T L Mamry !l'ul"'-fli'a I
SorrLnsaen L AOOOGO0000 VY |
merinos Y
...... L &
HE . .. ' HM, e HH', w DA
1 -4 -
Fimesd-fumnction miaEra-funciicon — T
hairdwaire accelernbors P relwans o odiules FaardwH S e Eryiors

and macro-functian modules
@ (b)

Fig. 3. (a) Assumed architecture of the end system. (b) The hardware/software interface.

We assume that the communication between the differgudrallel. Last, note that other communication mechanisms can
components can be abstracted by area and time paramet&sn be incorporated within the partitioning tool.
Specifically, tcomm represents the time taken to transfer a
sample of data across the hardware-software interface, i@.,Design Methodology

teomm IS the time to transfer a sample of data between nodes AFig. 4 shows our proposed design methodology for the
and B if nodes A and B are mapped to hardware and softwafggesign of multifunction systems. The methodology com-
respectlv_ely._ The communication tlme_depends on the assunb@ges four main steps: 1) specification of the application
communication model. For example, in a synchronous modgby, 2) estimation of node-level execution time and area in
it includes interrupt handlers in addition to the actual dalgmrdware and software implementations, 3) hardware/software
transfer time. In the case of an asynchronous communicatigyitioning, and 4) system synthesis.

it is the time to write to a buffer. Similarlyt/icomm (fscomm) 1) Specification of the Application SeThe first step is to

is the time taken to transfer a sample of data when bodRecify each application in the set. As described earlier,
nodes involved in the communication are mapped to hardwai@ assume a course-grain data-flow specification. The SDF
(software). Hardware area and software code size are aifgnain of Ptolemy is used to specify each application. The
associated with each interface. Specificallicomm is the output of this step is a DAG for each application in the set.
hardware area required to implement the hardware end M4 implicit assumption in such a block diagram specification
the hardware-software interface, amgom.m is the code size js that each block corresponds directly to a node (i.e., the
associated with implementing the software end of the interfagganularity of partitioning). The partitioning tool maps each
(code for polling or the specific interrupt handler). Fig. 3(bhode to either hardware or software; it does not break up
illustrates some of the communication parameters. The GCuBer-specified blocks. This approach seems reasonable for the
discussion in Section 1V-B describes the use of these variottsarse-grain data-flow semantics assumed. Alternatively, the
parameters and constraints within the partitioning processpplications can also be specified as DAG's, independent of
Mechanisms to implement an asynchronous interface betwehe Ptolemy interface.

the hardware and software have been described in [4]. In thi®) Estimation of Node-Level Execution Time and Area in
paper, we consider a shared bus between the modules. Ndéedware and Software Implementation$he next step is to
that the hardware and software components can executeg@t estimates of area and execution time for each node in



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 823

1 Fatemy SLF Design Methodology
K | 1. spacily each applicalion in sal
2. gamarats areatrme aalimatas for each node
3 Bpody parthoning 1oal
4 gynthesize syshem

~ e

D& Bar each application
i £  Estimation

ared and 1imsa ealimales w0 hardware and sofbware (&h &2 th 12) Tor asch node

SYSiEm consirasrds

L S b max hardware area AH

3 Partitioning Tool (HOF and CHOP) max sofware size AR
mdiied GCLP + commanalily measiure axiracion deadine D per applicaton

arnetated graph wilh communication archdechure (ah. o, fomee 38 sl
mapping and schedulng infarmation
e for mach aggicatian
4 Ptolemy
[ElageHDL and C code generation]
Hardware syrihesis lzals (2.9 Hypear]

rargware, pottware, mnletace synthess

Fig. 4. Design methodology for multifunction system codesign.

each application. Recall that each node could be implemenfdll The key ideas are summarized here for completeness.
in software on the programmable processor, in hardware a®ar approach assumes a block diagram description of each
fixed-function hardware accelerator, or in hardware mappedapplication, where each block corresponds to a node in the
a macrofunction module. Hence, estimates need to be obtainf@dG. We assume that a C and Silage description is available
for each node, for execution time in hardwdté), execution for each node. In our current implementation, the generated
time in software(ts), area when implemented in hardwareSilage code for each node is fed to Hyper [5], a high-level
(ah), and code size when implemented in softwése). synthesis tool. Hyper generates estimates of execution time
As mentioned earlier, we make a simplifying assumptioti?) and area(ah) for a hardware implementation of the
that the macrofunction modules are selected from a givefde. The hardware execution time is computed as the best
library of modules. Note that such a macrofunction-modufé@se execution time, i.e., the fastest execution time. This
approach is quite reasonable when nodes differ slightly, i.e.,GRr"esponds to the critical path of the control-data-flow graph
number of iterations, data sizes, word lengths, interfaces, ¥sociated with the nodeThe hardware area is computed by
Although designing such a library of modules is nontrivial, thi§étting the sample period for the node to be the critical path.
approach holds in the wake of the increasing trend seen in fgte that we are not restricted to using Hyper for generating
design community toward design “reuse.” For such nodes, thatimates. If VHDL descriptions were available for each node

estimates of execution time of a node on such a macrofunctigh MOre reasonable assumption than Silage), synthesis tools

module and the area of such a module are assumed tosggh as Behavioral Compiler from Synopsys could be used to

known from the library. As the library of such macrofunctioffSnerate estimates of area and execution time. We have used
modules matures. the estimates can be refined. the Hyper approach to demonstrate our ideas since we had

Next, we describe methods to obtain estimates of executifree access to the tools, the source code, and the experts who

N,
time in fixed-function hardware accelerators and software. B@g&gned '.[he tools. . . .
To obtain the estimates for software execution time and

fore we go into the details of the estimation process, we digress : . X

brieflv to comment on the accuracy of the estimation procesi2 We first use the code-generation mechanisms of Ptolemy
ety uracy -, imation p 5 generate C code [or code for a digital signal processor

The usefulness of the generated partition depends on h

h . i th  val btained P)] for each node. Next, this code is mapped to the
accurate the estimates are; It the actual values obtained ajgp;. oy processor under consideration. The implementation

synthesis are very different from the estimates, the result the cosynthesis tools described in [4] assumes the 56 000
solution could either be infeasible or have an unnecessarB\SP from Motorola. Once assembly code is generated, the
large hardware area. Accuracy of the estimated area and tig@gnvare execution timéts) estimates are obtained by using

values is directly proportional to the time spent on generatigge processor simulator, and code sizes) estimates are
the estimates; the more accurate the estimate, the longer it
takes to derive it. In the limiting case, the best estimate is

: P : : lin a separate work, Kalavadet al. have addressed the problem of
obtained after aCtua”y synthesmng the |mplementat|on. O%&tended” partitioning [1], where the area and execution time of a node are

philosophy in generating the estimates is to get fairly acchot single values but instead are represented as an area-delay tradeoff curve.
rate estimates from behavioral specifications, without goirfgch a curve represents the spectrum of implementation options for a node

. . . . ithin a given mapping. The extended partitioning problem is to select, in
throth the entire syntheS|s process. This approach 1S Slmﬁlaﬁition to a hardware or software mapping, the appropriate implementation

to the estimation methodology described in Appendix B @ér each node from such an area-delay curve.



824 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

obtained by running simple scripts on the generated code. koithat we are restricted to a single processor. Extending our

the examples we present in this paper, we used an in-hoagpproach to allow multiple programmable processors in the

processor, and software size and execution time estimates wargem is an area of future work.

available from the application developers. Given the architecture template shown in Fig. 3 and a set
Our assumption of requiring Silage (or VHDL) and C cod@P of applications, the codesign task consists of determining

to be available for each node does pose some limitations on fethe mapping of nodes, in all the applications, to either

usability of this approach. However, these restrictions sedrardware or software and 2) the schedule for the execution

less severe now (our cosynthesis framework was develop#dthe nodes within each application. The mapping is used

around 1993) given the current trend in commercial systeno construct the overall system architecture. The schedule is

level system synthesis tools such as COSSAP (from Synopsysgd to generate the software for each application. When a

and SPW (from the Alta group of Cadence) to also assumearticular application runs on the final system, it follows its

library-based mapping approach. It has been our observatfarticular execution schedule.

that the set of library modules becomes increasingly extensive

over time, and it becomes more likely that such C and

Silage/VHDL descriptions exist for each node. ll. RELATED WORK

Note also that our partitioning methodology is not restricted The hardware/software partitioning pr0b|em for a sing|e
to a block-diagram-based approach. Other specification agplication has been proved to be NP-hard [4]. The problem of
cosynthesis mechanisms that start with a unified descriptigptimizing over a set of multiple applications is at least as hard
of the application can also use our partitioning methodologys the problem of obtaining a design for a single application.
as long as a DAG where nodes are annotated with area affile we are not aware of any work that directly addresses the
time estimates can be generated. problem as we have defined it above, there have been several

3) Hardware/Software Partitioning:Once the estimates of efforts in related areas. We place these in perspective next.
execution time and size in hardware and software have beerrhe application-specific instruction processor (ASIP) syn-
obtained for each application, the partitioning tool maps anBlesis problem is to design a domain-specific processor by se-
schedules nodes in each application. Details of the partitioniR@ting the optimal “instruction set” for a class of applications.
methodology are referred to Section IV. The output of the parypically, the class of applications is analyzed to find the most
titioning process is an annotated graph indicating the select®hmonly used instructions, and a data path and controller
mapping for each node and a schedule for the executionfgf that instruction set is designed. Several bodies of research
each application. address this problem. For instance, the optimal instruction set

4) System Synthesid:ast, the annotated application graphselection problem is formulated as an integer linear program
are fed back into the Ptolemy framework for synthesis of thge the PEAS system [6], [7]. Van Praet al. [8] present an
hardware, software, and interface components. The synthggigractive approach to selecting the microinstructions in the
mechanism is described in Section V. Of course, other Synthes|p_ Other approaches include [9]_[]_]_] The pr0b|em we
sis mechanisms that start with such an annotated DAG couylé interested in here is to design a system-level hardware-
be used as well. software architecture optimized for a class of applications.
We focus on finding commonalities between applications at
a higher level of granularity than is typically considered
when designing ASIP’s. We do not address the design of

The multiapplication codesign problem is formally definethe programmable processor itself but focus on the optimal
as follows. Given a selP = {4, A,,--- Ax} of applica- mapping of components of the applications to the processor
tions, where each applicatiad; has a timing constrainD;, or custom hardware accelerators. Any progress in designing
design an implementation that can support all the applicatioASIP’s can be used to complement the techniques we discuss
from the given set. Only one application may be active at rdrere. We comment more on this topic in the concluding
time, and its timing constraints should be met. The desigection.
objective is to minimize the overall hardware area. Potkonjak et al. [12] address the problem of combining

Our partitioning tools try to minimize the area of theseveral concurrent tasks onto a single application-specific
extra hardware (macrofunction modules and fixed-functiantegrated circuit (ASIC) instead of designing a separate
hardware accelerators) while ensuring that each applicatidB8IC for each task. They discuss an iterative algorithm that
meets timing constraints. The motivation for this is to use tl@mbines tasks onto a single ASIC, based on their bit-width
available software processor as much as possible. The padguirements, register counts, source and destination locations,
tioning tool can be used in an iterative design methodolog@jc. We are concerned with a different problem here, that of
where different processors of varying cost and performanselecting the best hardware or software implementation for
could be used. For each processor, the total system cost eanh node in each application such that the overall system
be computed as a sum of the costs of the processor amdt is minimized. Also, we are concerned with nodes at a
the additional hardware. A design that minimizes the systemgher level of granularity.
cost can be selected. As mentioned earlier, the partitioningThe problem of designing systems where multiple applica-
process is quite efficient and hence is amenable to such raipishs run concurrently has been studied separately by Kalavade
exploration. A limitation of our current partitioning approactand Mogté [13].

D. Problem Definition



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 825

+ Applications (A, Ag,...Ay)

Commonality extraction I

|,"In::-rﬂ-'n:-r-alll;.' Measuras area and fime estimaies for each node

Partitisning deadlines D
Map & Scheduke nodes in each application AH (hw capacity). AS (sw capacity)
communicalion pararmaters

¥ annolated graph and schedule
for sach application

Fig. 5. Partitioning methodology for multifunction systems.

V. PARTITIONING METHODOLOGY hardware module is assumed to be characterized by a root

The proposed methodology for the multiapplication pafl@me and a list of possible parameFers. Two nodes that can
titioning problem is shown in Fig. 5. The set of specifie®® Mapped to the same macrofunction hardware module are
applications is first analyzed to extract commonality measur@§C said to be common and are tagged with the particular
across applications. In Section IV-A, we identify some mednodule that can support them. An example of a partial match
sures, such as repetitions and performance-area tradeoff, wifci1® two nodesDCT, one block and (DCT, eight blocky,
can be used to characterize nodes across all the applicatid¥ere DCT is the function name and the parameters specify
We also present simple methods to quantify these measures Hggnumber of blocks operated on for each iteration. Note that a
provide an intuitive explanation of how they can be used in tiféMilar approach can also be used to incorporate macrofunction
partitioning process. The hardware-software partitioning togpftware modules.
is then applied to each application. The partitioning algorithm Once matching is done, each node is tagged witiode
uses the commonality measures to bias the mappings of not@§ nodes that match have the same node type. The set of
that are common across applications. In Section IV-C, v@mmon nodes is the set of nodes that have the same node
describe two methods (CHOP and HOP) to partition the node®e.
in the applications into hardware and software. These methodd his root-name-parameter matching approach that we cur-
are based on a previously developed algorithm, GCLP [1gntly use for detecting commonality is quite simplistic. So-
used to partition a single application. The GCLP algorithm @histicated techniques such as template matching can be used
summarized in Section IV-B. to detect matches. We propose a mechanism to do this: a

functional description (such as C or Silage or VHDL code)
is assumed to be available for each node. Starting with such
A. Commonality Measures a high-level description, a control-data-flow graph (CDFG) is

In this section, we first describe methods to identify “com@enerated for each node using techniques commonly used in
mon” nodes, i.e., nodes that are common across differd€ high-level synthesis or compiler communities. A list of
applications. Then we describe different commonality meRossible templ_ates cha_ra_cte_rlzmg different arch_ltecture fee_ltures
sures and methods to quantify them. These commonal(ﬁPCh as FIRf|Iters,.|nf|n|t.e |mpulse response filters, .multlply_—
measures are based on several nodal properties. accumulates, etc.) is maintained. The CDFG associated with

1) Identification of Common Node&he set of common each node is then analyzed to detect which templates are
nodes consists of nodes that repeat over different applicatidti§sent. This can be done using covering techniques such
in the set and can be implemented on the same resource.8&sthose proposed by Rat al. [14]. Then the templates
discussed earlier, we assume that nodes can be implemente@fgPciated with nodes can be compared. Nodes that have the
three ways: software, hardware on a fixed-function acceleratd®me templates are said to be common. A macrofunction
and hardware on an existing macrofunction module. hardware module that implements such a set of templates

In general, identifying structural and functional matche®r common nodes can be synthesized. An alternative to the
across different nodes is a difficult problem. In this work, wéemplate approach is to compare pairs of nodes to extract
use a simple method as follows. The user tags all the nodegégular patterns across them, as proposed by Geeala[15].
all the applications with a tupleroot name, parametejslf ~Common implementations that accommodate regular patterns
the root name and parameter values on two nodes match exa be synthesized. Note that this process can be made even
actly, the nodes are common and can in fact be mapped to there complex by trying to look across node boundaries to
same resource: either a programmable processor executingd@@ct matching patterns. In the limiting case, such methods
same function or the same fixed-function hardware acceleratior extract commonality tend to the ASIP problem that tries to
Such a fixed-function hardware accelerator can be synthesiz@entify common “instruction patterns.”
using the Ptolemy mechanisms described in Section V. We have taken a first step in this direction; for future work,

If the parameters do not match, we check for an existinge intend to formalize this approach. As a starting point, we
macrofunction hardware module that matches with the robelieve that restricting to simpler approaches might increase
name and can support both parameters. Each macrofunctio@ practicability of our approach. In practice, often the hard-



826 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

ware/software selection is limited by available macrofunction A commonality vector{ R;, PA;,U;,C;) is thus computed
hardware modules. In such a scenario, allowing the userftw each node. Nodes with the same type have the same
detect possible function matches might suffice. Note that eveommonality vectors. For each property, the values are then
if the user determines the common nodes, the actual selectimmmalized across all the nodes. The cumulative effect of
of the mapping for each application is not obvious due tihe different properties can be incorporated by combining
the other constraints in the problem. The partitioning todlifferent measures. In Section IV-C, we show how some of
determines the best mapping while meeting the constraintsthese measures are used in the partitioning process.
One of our underlying philosophies in automated partition-
ing is to try to systematizethe design process commonly
used by designers today. We have strived to make the c&eAlgorithm for Partitioning Single Independent Applications
partitioning tool efficient to permit an iterative and interactive |n this section, we briefly summarize the GCLP algorithm
design methodology. proposed by Kalavadet al.,which is used to partition a single
2) Quantification of Commonality Measure€nce the set applicationindependentf other applications. For more details
of common nodes is identified, each common node is analyzgglthe GCLP algorithm, the reader is referred to [1]. GCLP is
to compute metrics that characterize its properties. We haye kernel of the multiapplication partitioning procedures. In
identified some properties and propose simple techniques 8ction IV-C1 and IV-C2, we describe two modifications to
quantifying them. In Section IV-C, we describe the use ahe GCLP algorithm that can be applied to the multiapplication
these metrics in the partitioning tool. The properties, thedodesign problem.
quantification, and their intuitive meaning are discussed next.The GCLP algorithm assumes an architecture consisting of
a) Repetitions of a node (R)The repetitions(£;) of a a programmable processor and custom hardware accelerators.
node: are computed as the number of occurrences, acrossTie application is assumed to be specified as a DAG, similar
the applications, of nodes of the same type as the type of nadehat described in Section II-A of this paper. The goal of the
i. R; is simply the number of times nodeappears over all GCLP algorithm is to find the mapping and schedule for all
the applications. The repetitions measure can be used in tie nodes in the given application such that the deadline is met
ways. A node that appears more frequently (higlialue) can and the area of the nodes mapped to hardware is minimized.
be given a priority for a custom hardware implementation. In The GCLP algorithm is based on list scheduling, where the
other words, if a node occurs many times in different applicgraph is traversed from a source node to the sink node and
tions, allocating a custom hardware area for it can be justifieéie node is mapped in each step. In contrast to traditional
since it gets reused over many applications. Alternatively, thist scheduling, where a single objective function is used to
repetitions measure can be used to maintain consistencyséflect the mapping of the node, GClalaptively selects
mapping; when mapping nodes with a highvalue, all its the mapping criterion from among two possible objective
instances can be mapped to either hardware or software. functions: minimize finish time of the node or minimize the
b) Performance-area ratio of a node (PAJhe perform- area of the node. This criterion could change at each step
ance-area ratioP A;) of a nodei is measured as the ratio ofin the algorithm. The motivation for adaptively selecting the
the performance gain (speedup achieved by implementing optimization objective is as follows. Due to the constrained
hardware) to the area penalty to be paid for the hardwatature of the mapping problem, minimizing hardware area
implementation. Nodes with a highePA ratio indicate a and meeting timing constraints often present conflicting op-
higher benefit in selecting a hardware implementation. timization goals. An objective function that minimizes finish
¢) Urgency of a node (U):The urgency(U;) of a nodei time drives the solution toward feasibility but is likely to
is computed as the number of times a node of the same tyge suboptimal in terms of the area. On the other hand, if a
as that of node appears on the critical paths for the differenbode is always mapped such that area is minimized, the final
applications. (A critical path in the application graph is the paolution may not meet timing constraints. To overcome this
that has the longest execution time.) A node that appears on pineblem, the GCLP algorithm adaptively selects one of the
critical path in a larger number of applications is more “urgen@ptimization objectives at each step, depending on which of
and can be given preference for a faster implementation. the two dimensions is critical at that step. This criticality is
d) Concurrency of a node (C)The concurrency’; of a computed via a global criticality measuf_'. That said, using
node: is the number of “concurrent” instances of the nodqust theGC measure may lead to locally suboptimal mapping
One way to compute the concurrency is as follows. Eadecisions. Sometimes a node can have attributes that render
application is first scheduled assuming infinite resources fits mapping to either hardware or software more appropriate.
each node type. The number of instances actually used at dimgese are accommodated by quantifying the local preference
cycle is computed for each node type for each applicatioof nodes(é) and using this value to bias the threshold used in
The concurrency of nodeis defined as the average of theséC' comparison. Fig. 6(a) summarizes this idea. Let us now
numbers over all applications. The concurrency of a nodleok at the details of the GCLP algorithm.
can influence the number of instances of the node when itThe flow of the GCLP algorithm is shown in Fig. 6(b).
is implemented in hardware. For example, if the concurrency represents the set of nodes in the graph: is the set
for nodei is two, it indicates that, on average, two instances of unmapped nodes at the current stéf; is initialized to
node typei are active at any time, and hence we can includ®. During initialization, for each nodé, a local attribute
two hardware accelerators for node type 6; that quantifies the preference ofto a hardware or a



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 827

Indializalian
Unmapped nodes My = M Mapped nodes = 0 I
¥
Cormpule lacal wss prefemmnss maasura s forall r-:;.'e:]
Oy iy
i Yo min(fnish tme) 7| Compite Glatal Crticasty |GC) l
" =7 o v
global (imea) : o o o T
criticality & A mn[% rescuros consumed) 2 |Select node k amang ready nodes I
e BB | {hires haodd 3
S 3 Swiec! Mapping M, for k
2 L] i limes 31 threshald = 0.5 +
' 3.2 [3C = threshald] oy mindfinah ima)
Lacal Preferances Main loag ales aby: men|aesa)
.1 3.3 Determine mappng using selected abjective
4 ¥
{a} ib) Compube start bme &, on selecied mapging I
L

Unmappad nodas = 0% |

OONE » ¥
Fig. 6. (a) Key idea of the GCLP algorithm. (b) Flow of GCLP algorithm.

software mapping is computed. These attributes include ttime of the node under consideration is selectedG{# is
area/performance ratio in different mappings, properties suess than a threshold, a mapping that minimizes the resources
as bit manipulations and precision variance that indicate émardware area) consumed is selected. The threshold may be
affinity to hardware, and factors such as the density of contmither supplied by the user or statistically determined over a
operations and memory operations that dictate an affinity test set. In our experiments, we assume a threshold of 0.5.
software. The attributé; for a nodei is computed as a convexNote that theGC measure is also a “look-ahead” measure
combination of these affinity metrics for nodeln this paper, that tries to minimize the greediness typically associated with
we will not go into more details of these attributes. serial traversal. As mentioned earlier, the local preference of
The algorithm then maps one node per step. At the bire node is quantified by and is used to bias the threshold
ginning of each step, the global time criticality meast€ used inGC' comparison. (This local preference is replaced by
is computed for that steg=C is a measure of how critical the bias introduced by the commonality measures in the case
time is at that step, i.e., given the nodes already mappefdmultiapplication partitioning.)
so far and the required finish time of the applicati@r’ Using the selected optimization objective, the selected node
is indicative of the slack available at that instadtC' is & is assigned a mappingM;). The start timet, for the
computed at each step of the algorithm as a fraction of the esecution of node: is then computed using the finish times
yet unmapped nodes that need to be moved from softwareofoall of its predecessors and the communication delay (de-
hardware, given the mappings of nodes mapped so far, syanding on the relative mappings of predecessorskanthis
that the resultant solution is feasible. A highC indicates set of start times defines the schedule for the system. The
that time is more critical. After computin?C, a nodek is process is repeatddV| times over all nodes. The algorithm is
picked from among alleadynodes (nodes whose predecessomimmarized on the next page.
have been mapped) using an urgency criterion. In particular,Some of the key steps in the algorithm outlined are dis-
the nodek on the longest path is selected in this step, asissed next. After computingC, a nodek is selected for
shown in step S2) of the algorithm shown at the bottom ofiapping from among all ready nodes in step S2). Ready nodes
the next page. The next step, S3), is to select the mappmg those whose predecessors have been mapped. We use an
for the selected nodk. As described earlier, instead of usingurgency criterion to select node, i.e., & is selected as the
a fixed function to select the mapping, the GCLP algorithmode, from among all ready nodes, that has the longest path
adaptivelyselects between minimizing total hardware area aid completion. Execution time values are required in order
minimizing system finish time as the objective to be used to compute the longest path. The effective execution time
determine the mapping of node. This adaptive selection of nodes that have already been mapped is determined by
is governed by global criticality7C and local preference their mapping. However, the execution time is not known for
6y of the selected nodé, as shown in Fig. 6. The GCLP nodes that have yet to be mapped. To address this problem, we
algorithm selects the optimization objective by compaxi#tg define the effective execution tin{é.x..(¢)) of an unmapped
to a threshold. IfGC is greater than the threshold, time isode: as the mean execution time of the node, assuming it
said to be critical, and a mapping that minimizes the finisdk mapped to hardware with probabilityC' and to software



828 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

with probability (1 — GC). Here we use the notion af#fC

Objective 2: ((asy +asi.  V/AS) I(m = sw)+ ((ah; +

comim

as a node-invariant probability that an unmapped node Wih. ) /AH emaining): I(m = hw), whereI(m = z) is an

comm

be mapped to hardware. Once the effective execution timesdicator function whose value is one if mappingis “z.”

are computed, the longest path is computed and riode
selected according to the longest path.

Objective 1 selects a mapping that minimizes the finish
time of the node. A node can begin execution only after

The mapping for nodé is selected in step S3). First, the efall of its predecessors have finished execution and the data
fective threshold is computed by adding the local preferencehas been transferred to it from its predecessors. Note that the
a default threshold of 0.87C is compared to this threshold. If communication delays are taken into accou(y, k) includes
GC is greater than the threshold, time is assumed to be criticéle time to transfer data to this node and is dependent on
and hence a mapping that minimizes the finish time of nodlee particular communication mechanism and the number of

k is selected (objective 1). K7C is less than the threshold,

samples transferred. Also, a hode cannot begin execution on

time is not that critical, and a mapping that minimizes ththe software resource until the last node mapped to software
system hardware area is selected (objective 2). Based on llas finished execution. This is accounted for by the tggm
mapping selected, the schedule is computed in step S4). Notais, ¢4, IS computed for nodek on all mappingsm.

that this schedule also includes the communication times. Thiee mapping that minimizes,;s1,(k,m) is selected as the

objective functions are as follows.
Objective 1: tnisn(k, m), where m € {software, hard-
ware} (tanisn(k, m) is the finish time of nodé on mappingn)

tﬁnish(k'a m) = Inax(llzla?)((tﬁnish(p) + tc (p7 k))7 tlast (m))

+ t(k,m), where
P(k) =set of predecessors of no#lep € P(k)
tanien(p) =finish time of predecesser
t.(p, k) =communication time between predecessor
p and nodek
tiast (m) =finish time of the last node assigned
to mapping m
=0 if m corresponds to hardware
t(k, m) =execution time of nodé& on mappingmn.

mapping for nodek.

Obijective 2 uses a “percentage resource consumption” mea-
sure. This measure is the ratio of the resource area of a node
(nodal area plus communication area) to the total resource
area. Recall that the area of nolén hardware and software
is ah andas, respectively. The areah!t  (ast ) takes
into account the total cost of communication (glue logic in
hardware and code in software) between nddén hard-
ware (software) and all its predecessors. For the hardware
resource, the resource area required by the node is divided
by the available hardware aréal Hcmaining), While for the
software resource, the resource area is divided by the software
capacity AS. Objective 2 thus favors software allocation as
the algorithm proceeds. Note that this step also checks to
see if the resource required for this mapping still meets the
capacity constraint4S or AH). If objective 2 is selected as

Algorithm GCLP

Input: Graph GG = (N, A); For each node ¢ in N: ah;,as;,th,,ts; and a timing constraint D
Output: for eachnode ¢ in IV, Mapping M;, start time ¢;;

Initialize:

I1) Compute values for all nodes.

I2) Ny = {unmapped nodes} = N.

Procedure:

while {|Ny| >0} {

S1) Compute GC

S2) Select node k for mapping
S2.1) Determine Npg,the set of ready nodes
S2.2) Compute the effective execution time

texec(t) for each node ¢

if (mapping(i{) == 0) texec(t) = GC x th; + (1 — GC) * ts; /* unmapped */

else if (mapping(i) == hardware) fexec(?)
texec (Z) = tsz
$2.3) Compute the longest path longestPath(),

else if (mapping(i) == software)

=th;

USing fexec(t), for all ready nodes

S2.4) Select node k with the maximum longestPath for mapping

SB) Determine mapping M} for k:
83.1) threshold = 0.5 + &

S3.2) If (GC > threshold)m: minimize(objectivel); /* minimize(finish time)"/
else m: minimize(objective?2); /" minimize(hardware area)”/
S3.3) Determine mapping M}, using selected objective.

S4) Compute start time ¢
S5) Ny = Ny — {k}; Update remaining time;}



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 829

the mapping function, then the percentage resource consurieedormalized over all the nodes in the application. Th&/;

is computed for all mappings. The mapping that minimizeseasure is used to bias the threshold in the GCLP algorithm.

this quantity is selected. The procedure adopted in HOP for designing for multiple
Note that different communication models can be accorapplications is summarized as follows:

modated within GCLP. In this paper, we assume a shared bus.

Exclusive access to the bus by different resources is accoun{gd, . cqure HOP

for by modifying the function that computes the communisy) 1qentify *common nodes” and count the number

cation cost. Specifically, the bus is checked for availability = ¢ instances of each common node over all the

while computing the communication and finish times. This is 55515 cations. The value of the repetitions

similar in concept to modeling sequential execution on the peacure R; is obtained by normalizing the

programmable processor. For the implementation described in - pypber of instances with respect to the

[4], a point to point communication between hardware and  jargest number thus obtained; this yields

software was assumed. a value for R; between O and 1.

Last, the GCLP algorithm has quadratic complexity in thg2) Compute the performance-area trade-off measure
number of nodes. In the work reported in [1], it is Shown = £, cach node i as PA; = (ts; — th;)/ah; where

that the solution generated by GCLP compares favorably with £, y04e i, ts; and th; are execution times in
the optimal solution generated by an exact formulation using  goftyare and hardware respectively and ah; is

integer programming. the hardware area. Normalize PA; over all
nodes to a value between O and 1.
C. Partitioning Multiple Applications S3) Compute for each node ¢, the commonality mea-

sure CM; = pR; + nPA,; using user-specified

We next describe two methods for partitioning multiple
weights p and 7. Normalize CM; to a value

applications. These methods use modified versions of the
GCLP algorithm. In the first method, HOP, described in  Petween 0and 0.5,

Section IV-C1, the commonality measures are used to pi§d) For eachapplication A,, run GCLP — HOP.

the mapping decisions made by GCLP. In particular, if the Alsor.ithm GCFP'HOP .
repetitions measuréR) of a node is high, the node is biased This is a variant of the GCLP algorithm
toward a hardware mapping; otherwise, the performance-area described inFig. 6, where step 3 in GCLP
measure(PA) is used to bias its mapping toward one that is replaced as follows:

is most suitable to that node. In the second method, CHOP, GCLP-S3) Determine mapping My for k:
described in Section IV-C2, the applications are ordered ac- GCLP-S3.1 threshold = 0.5 — CMj.
cording to their relative criticality and selected for partitioning GCLP-S3.2 1f(GC > threshold)

in this order. Mapping decisions made when partitioning one M}, = hardvare,

application are propagated to the next application. Common
nodes are encouraged to share the same mapping, there
maintaining consistency of mapping across applications.

else M} = software;

IQthe interpretation of step S4) in procedure HOP is as
1) HOP— Hardware Bias for Common Node$n  this follows. For nodes with a nonze@M;, value, the threshold

method, the partitioning algorithm is modified to incorporat'g reduced to below its default value of 0.5. TG at that

- ; ; f the algorithm is compared to this modified threshold.
two basic factors that influence the mapping of a hode wh ff?p 0 . o
multiple applications are considered. % the GC is above the threshold, a hardware mapping is

. . L selected. By lowering the threshold with the commonality

1) Ifa nodg Is repeated in §eve_ra| appl|cat|orlws. (and h.e %asure, a hardware bias is introduced.Gf” is below
has a h'ghR measure), it might be ber_1ef|C|aI to blasthe threshold, a software mapping is used. The mapping
!tS mapplng_toward hardware. By sharing a hardway ecision for common nodes is thus made by considering the
|mplem_entat|on for repeated nodes, other less frequ_en gmbination of application-specific requirements (as dictated
appearing nodes may get mapped to software, 'ead'”gb@? GC) as well as interapplication demands (modeled by
an overall reduction in hardware area. CM;). Nodes that are not common across applications get

2) If a node takes a small area, relative to all nodes fapped in a way such that feasibility is met while still
all applications, when implemented in hardware, and fttempting to minimize the total area.

the difference in software and hardware execution times2) CHOP—Consistency in Mapping Common Nod#s:
is high (i.e., node has a higiPA measure), it might HOP, we used GCLP-HOP to bias common nodes toward
be beneficial to bias the mapping of the node towatghrdware. However, an alternative way of mapping mul-
hardware. This will free up the software resource foffunction systems is to maintain a “consistency” in the
nodes that might otherwise be expensive in hardwareway the common nodes are mapped. We introduce a second
These two factors can be put to use when consideringriant of the GCLP algorithm that embodies this particular
the mapping of multiple applications. We define for eactiesign principle. The key idea is to map the applications
node: a commonality measur€M; = pR; + 7PA;, where in a particular order and to propagate information about
R; is the repetitions measuré’ A; is the performance-areathe mapping decisions made. One way to select the order
tradeoff measure, andand« are user-defined weight§!AJ;  of applications is to use an application criticality measure,



830 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

which indicates the relative computational complexity of eaddure that the application-specific constraints are also taken
application. The propagation of mapping decisions allowsto consideration. If no node of the type of noddéas been
information about mapping decisions within an applicatiomapped before, th& A measure is used to select its mapping.
to be sharedbetween applications. Lét be the node being In this case, the measure tries to select the best possible
considered. If a node of the same typekalsas been mapped mapping for nodek, considering the effect of the current
earlier, the mapping decision fdr is biased in the direction application only. In particular, i? A is high, it indicates a high

of the previous mapping. Otherwise, the mapping of nodeenefit of a hardware mapping. In such a case, the threshold
k is determined locally. The procedure used in CHOP is lowered to favor a hardware mapping. Of course7 @ is
summarized at the bottom of the page. low enough, then a software mapping gets selected.

The interpretation of step S4) in procedure CHOP is asWhile selecting the applications, the most critical appli-
follows. Let k& be the node being considered at a particulmation (highestAC) is considered first. The nodes in this
step. If a node of the same type as nddbas been mapped application are mapped in a way that best meets the timing
by a previously considered application, the goal is to try teonstraints. Other nodes then follow the mapping decisions
preserve that mapping for node This is accomplished by made by the more critical applications, unless their local pref-
biasing the threshold in the direction of the previous selectiogrence strongly dictates otherwise. We are also experimenting
Thus, if the earlier mapping was hardware, the threshold wdth other orderings of applications.
lowered by the repetitions measufg, favoring a hardware  Once all the nodes in each application have been mapped to
implementation for this node. Similarly, if a node of the sameither hardware or software, using either of the methodologies
type as nodek has been previously mapped to softwarelescribed in the previous section, a postmapping optimization
the threshold is raised by the repetitions meashfe thus step may be applied. This involves swapping some nodes from
favoring a software implementation. Note that the mapping 6frdware to software or applying user-controlled fine tuning.
node: is not hard codedto the mapping selected previously;
instead, it is “biased” toward that mapping. By lowering the
threshold for a node that has a previous mapping in hardware, V. SYSTEM SYNTHESIS
its chances of getting mapped to hardware are increasedOnce the mapping and schedule have been determined, the
However, the state of the current application, as reflected fiyal system is to be synthesized. Fig. 7 shows the system-
the time criticality measuré&>C, is also considered. GC is synthesis mechanism.
compared to the modified threshold, and if it is greater thanThe hardware synthesis process assumes a hierarchical ap-
the threshold, only then is a hardware mapping selected. Thpsach, where a layout is first generated for each node mapped
the mapping of common nodes is biased toward a mapping thata fixed-function hardware accelerator, and these layout
maintains consistency across all applications while makimgodules, along with the preexisting macrofunction modules,

Procedure CHOP

S1) Compute commonality measures R and PA for all nodes, as described earlier.

S2) Compute application criticality (AC)for all the applications in the set. AC;is com-
puted as (X ts;)/D;, where ts; is the execution time of node ¢ when implemented in soft-
ware, X ts; is the sum of ¢s; over all nodes ¢ in applications j, and D; is the required
finish time for application A;. The smaller the ratio, the fewer the hardware
resources required to implement A; and the lower the criticality of the application.

S3) Order the applications by AC such that the most critical application (largest AC) is
considered first.

S4) For each A, in this order, run GCLP-CHOP

Algorithm GCLP-CHOP
This is a variant of the GCLP algorithm described in Fig. 6, where step 3
in GCLP is replaced as follows.
GCLP-S3) Determine mapping Mj for k:
GCLP-S3.1 if (computed_shared mapping(k) ==1)
{/* node type mapped before*/
if (shared mapping(k) == hardware)
threshold = 0.5 — R, /* lower threshold */
else if (shared_mapping(k) == software)
threshold = 0.5 + Ry, /* raise threshold */
} else/" no earlier shared mapping */
threshold = 0.5 — PA.
GCLP-33.2 if(GC > threshold) M} = hardware, else M} = software
GCLP-33.3) Update shared mapping



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 831

-qP= !Pn ""E 'I!'l'il

TP T partition {using HOP or GHOR) i Software
! sonadule ]
synthass schedule synthesss
H {nodes mapped 1o han:'w:qrn; % {nedes mapped 1o soffwans|
Ganarate layout for each node Ganarate code for wach node
node
¥ w nooe
Flalarm
f Pto Iy
Sdage ., -
=
Hypear - =
layoui
[T A e 1 -]
fixed-functicon
software code
y hardware acceleralors
schedule ¥
par _ * = Combine layouts s Combing coda Ly |
ﬂpp'll:"-&'lll:n « Ganerale conbrolier for amach + Generate scheduler for each E-E'él;lﬂdmﬁ
{ p application application EBolication
e ro-Tunetion i
hardware modules | layout code |
v

synthesized sysiam

Fig. 7. System-synthesis procedure.

are put together to generate a netlist for the complete systamations. In Section VI-A, we describe the relevant details of
As mentioned earlier, we do not synthesize macrofunctidhe applications, architecture, and node metrics. In Section VI-
modules but assume that these are selected from a preexisBngve present the solution obtained when each application
set of modules. However, the method outlined in Section I\ls consideredndependentlyThe solutions obtained by using
Al can be used to synthesize the macrofunction modules. HOP and CHOP are discussed in Sections VI-C and VI-D,
The layout for a fixed-function implementation is obtainedespectively. The solutions obtained by using these are found
by using a combination of preexisting tools such as Ptoleny be superior to (have smaller area than) the solution obtained
[2] and Hyper [5]. In particular, Silagecode is first generated when each application is considered independently. We have
for the node using Ptolemy. This Silage code is then pasdathlemented HOP and CHOP and incorporated them into the
through Hyper to synthesize the actual layout. The layoutsisic GCLP algorithm. Both HOP and CHOP are efficient
are then combined, and a controller is generated for eaalgorithms and have a quadratic complexity in the number of
application using the generated schedule. nodes. Each run through the partitioning algorithm takes less
The software-synthesis process involves generating cdtian one second of CPU time on a Sparc20.
for each application. A two-tiered approach, similar to the
hardware-synthesis process, is assumed. C code is generateflpplication Set, System Architecture, and Node Metrics
for each node using the pred_efmed modules_ n Ptolemy.l Application Set: To illustrate some of the concepts in-
T_hese code modules are then stitched together'|.n the sequ?& uced here, we consider the application set consisting of:
dictated by the schedule (generated by the partitioning tool) to :
obtain a single code file for each application. * MPEG2 video encode (M2E);
At run time, the software modules corresponding to the * H.261 decode and encode (H);
selected application are loaded in, and the hardware for the MPEG2 video decode (M2D).
selected application is activated by the controller for that gych a mix is representative of the different functions
application. This synthesis mgchanism has been irnplemen!tgﬁning on an add-on card in a laptop PC, where the user may
as part of the Ptolemy environment. More details on thigs watching a movie (MPEG2 video decode), or conducting a

approach can be found in [3] and [4]. video conference (H.261 encode/decode), or transmitting video
data (MPEG2 video encode). Suppose that we want to design
VI. NUMERICAL RESULTS an implementation that runs this set of applications, such that

In this section, we report the results obtained for designirz?é]y ﬁn? aphpllcr?tlon rur|1_s a_t a ggen .tlme._ F'ghs Shr?WS theh
an implementation for a system running a set of video appﬁ—"’lp s for the three app |cat|9ns. ne iteration throug agrap
corresponds to the processing of a macroblock of data

2silage is a high-level functional language specifically designed to descritieat application. The latency constraint on the graph specifies
DSP applications. Several research and commercial synthesis systems use
Silage as the specification language [for instance, Hyper from the University3A macroblock is a basic data type used in video encoding/decoding. An
of California, Berkeley, and DSPStation from Frontier Design, Inc. (previouslynage is typically divided into blocks of pixels, where a block hax 8
part of Mentor Graphics)]. The methodology is not restricted to using Silagxels, and a macroblock consists of four blocks. The number of macroblocks
and Hyper; VHDL and other synthesis tools can be used as well. per image depends on the frame size.



832 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

saurcs e melkn frarme '.-E'ra:.il_ls
procesging —eeslimation (#®compensabon g sub e del EQuaTt g m"lrgldr
ysraly {me) (me) [2Lib o ]
1 | v vl
quant
r
et
¥
ITams
F add
fadd)
w ¥
{#) MPEG2 encode (M2E) Sink procassing
vanabie |—M_M¢ ] [ W BrcE ":2%” p vk [whquants] g e acd Tl — .
e ) EEngih . ; ] i,ed]
an:2 ..l.‘IEr.;IJ.IIdI:' liguant p| detle adolp/einkd | srd ! | me | loop E"-‘f
[wid] ; I_iélh'er ]
o
(b} MPEG2 decode (M2D) P ;
W Srcif Ma K me s ibapiy) sub b det pouariy vie [ 2700 Lok
| ¥ Tlegl |
guant e
L
id |
. ¥ add |
(o) H:261 Codeo {deonde « enoode] [H)
Fig. 8. Application graphs (a) MPEG2 video encode, (b) MPEG2 video decode, (c) H.261 video encode/decode.
TABLE |
APPLICATION SET
e . " latency criticality
Application frame size frame rate constraint # nodes (AC)
MPEG? video encode (M2E) CCIR 601 12 fps 6110 cycles 11 327
MPEG?2 video decode (M2D) CCIR 601 15 fps 8888 cycles 7 1.23
H.261 video encode/decode (H) CIF 15 fps 16666 cycles 24 1.68
the maximum time available_ to process one iteration. Thi_s : hardwars [ T =
computed from the frame size and rate. Table | summariz =™ g * i
. . . o . I Y g J—
the details of the applications in the application mix, thei

timing constraints, and the application criticality. Note the
the MPEG2 encoder and decoder operate at a larger fra
size than the H.261 codec. The application criticality fo
gppllcatlonj IS computed as the ratin tsi/Dj’ whereX ts; Fig. 9. System architecture assumed in experiments.
is the sum of the software execution times for all nodés

applicationj and D, is the deadline for application
2) System ArchitectureWe assume a system architectur0f and hardware accelerators. The hardware accelerators are

consisting of a single programmable processor, multiple fixegEnnected to the processor via a shared bus. The coprocessor is
function accelerators, and coprocessors attached to the proéisely coupled to the processor. The communication between
sor. The programmable processor can implement all the nodliféerent resources is abstracted into communication delays,
(the software implementation). The coprocessor representé/Rich are used by the partitioning algorithm.

special case of the macrofunction hardware modules describe®ifferent system implementations are quantified by a “sys-
earlier. The coprocessor can implement some of the nodin cost,” which is the total hardware area required in addition
We assume a single-instruction multiple-data vector coprocég-the programmable processor. The partitioning algorithm
sor that can implement the following functions: DCT/IDCTdetermines the number of coprocessors and the number and
Quantizer/IQuantizer, frame add/sub, motion compensatidyipes of hardware accelerators, as well as a mapping of
and loop filter. The hardware accelerators implement specifiedes in all the applications to these resources (programmable
functionality. We assume hardware accelerators for nodes syehcessor, coprocessors, and hardware accelerators) such that
as a motion estimator or a variable length encoder. Tablegi@ch application meets its timing constraint and the overall
summarizes the different resource types available. Fig. 9 susystem cost is minimal.

marizes the system architecture. The end system contains ong Node Metrics: Software execution times for nodes are
programmable processor and several instances of the coprooesasured by a detailed simulation on a media processor




KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 833

RESOURCETYPES IN THE SYSTEM ARCHITECTURE HA: FIXED-FUN!—',I'AI\CB)IL_E/-\IIIRDWARE ACCELERATOR CP: MACROFUNCTION HARDWARE MODULE
Type of Resource Notation Type of Resource Notation

Programmable Processor PP Error Decoder (Hardware Accelerator) HA6

SIMD Coprocessor CP Error Encoder (Hardware Accelerator) HA7

Motion Estimator (Hardware Accelerator) HAI1 Encode Source Processing (Hardware Accelerator) | HAR

Variable Length Encoder (Hardware Accelerator) | HA2 Encode Sink Processing (Hardware Accelerator) HA9

Variable Length Decoder (Hardware Accelerator) | HA3 Decode Source Processing (Hardware Accelerator) | HA10

H.261 Source Processing (Hardware Accelerator) | HA4 Dccode Sink Processing (Hardware Accelerator) HAT1I

H.261 Sink Processing (Hardware Accclerator) HAS

TABLE 11l
NobDE TyPeEs R AND PA MEASURES AND IMPLEMENTATION OPTIONS
o | m | e | e | Nk || e
srcl 0.3333 0 PP, HAS sink 1 0.3333 0.130435 PP, HA9
me 0.3333 1.0 PP, HA1 src2 0.3333 0.130455 PP, HA10
mc 1.0 0 PP, CP vid 0.3333 0.135326 PP, HA3
sub 0.3333 0 PP, CP sink2 0.3333 0.130435 PP. HAl
dct 0.3333 0 PP, CP src3 0 0 PP, HA4
quant 0.3333 0 PP, CP sink3 0 0 PP, HAS
vle 0.3333 0.338315 PP, HA2 loop 0.3333 0 PP, CP
iquant 1.0 0 PP, CP ed 0 0.202899 PP, HA6
idct 1.0 0 PP, CP cc 0 0.202899 PP, HA7
add 1.0 0 PP, CP

developed in our lab. Software code size for each nodeimsaddition to the processor are reported. The corresponding
also available. Hardware execution times and areas for nodgstem area for each application is the sum of the areas of the
(for both, fixed-function accelerators and the coprocessdrrdware resources. Note also that each solution represents
are abstracted from an actual implementation of a videa-feasible solution for each application. The finish time (and
conferencing system developed in our lab. Note that sevesahedule) calculations take into account the time to transfer
nodes are repeated over different applications (e.g., inver&a across the interface, in addition to the execution times in
quantizer appears four times; the motion estimator appedifierent implementations. Specifically, since a shared bus is
two times). Table Ill summarizes the repetitio®) and assumed, exclusive access to the bus by different resources
performance/aredPA) measures for the different types ofis accounted for in the calculations. Last, the row labeled
nodes in the application mix. It also lists the implementatioret” reports the union of the hardware resources needed for
options for each node type; the particular implementation féfte application set and the total system area for the set of
each node within different applications is selected by troplications.
partitioning process.

With this background, we are now ready to report the
solutions obtained by different methods. In Section VI-B, thB- Experiment 1: Independent Mapping

solution obtained by considering each application indepen-We first run each application independently through the
dently, without considering the other applications in the sasriginal GCLP algorithm. This represents a naive approach,
is reported (i.e., using vanilla GCLP). Results with HOP angthere each application is designed separately without taking
CHOP are reported in Sections VI-C and VI-D, respectivelynto consideration any of the features of the multiple applica-
It is assumed that each of these solutions uses a sintiins in the set. Table IV summarizes the resultant hardware
programmable processor. The results are tabulated as follovesources used for each application and the total system area.
For each application in the set, the hardware resources ustate that application H requires two instances of the resource



834 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

TABLE IV
RESULTS OF EXPERIMENT 1
Application Hardware Resources Used System Cost
M2E CP, HA1, HA2, HA8 103
M2D HA3, HA10 25
H CP, CP, HA1, HA2, HA4, HAS, HAS, HA11 199
Set CP, CP, HA1, HA2, HA3, HA4, HAS, HAS8, HA10, HA11 224
TABLE V
RESULTS OF EXPERIMENT 2
Case Application Hardware Resources Used System Cost
M2E CP, HA1, HA2, HAS 103
M2D HA3, HA10 25
H CP, CP, HAI, HA3, HA4, HAB 193
Case 2A:CM =R Set CP, CP, HA1, HA2, HA3, HA4, HAS, HA10 206
M2E CP, HA1, HA2, HAS 103
M2D HA3, HA10 25
H CP, CP, HA, HA2, HA4, HAS, HAS, HAl1 199
Case 2B: CM =PA Set CP, CP, HAI, HA2, HA3, HA4, HAS, HAS, HA 10, HATI 224
M2E CP, HA1. HA2, HA8 103
M2D HA3, HA10 25
H CP, CP, HA1. HA2, HA4, HAS 181
Case 2C: CM=R+PA Set CP, CP, HAI, HA2, HA3, HA4, HA8, HA10 206

CP. The total area for the mix is computed by summing thedfect asé in considering local preferences of nodes. In case
areas of the union of the hardware resources used in the th2€: the combined effect oPA and R is the same as the
applications. This represents the total system area requirectffect of R alone in case 2A.Thus, the repetitions measure
implement the multifunction system. seems to help to reduce the system area. For this example, the
solution obtained from HOP is 8% smaller than that obtained

C. Experiment 2: HOP by considering applications independently.

We next apply HOP, which uses GCLP-HOP, where the .
threshold is modified with a linear combination of theand D- EXperiment 3: CHOP
PA measures (recall thahreshold = 0.5 — C'M;, where We now apply CHOP, where the applications are considered
CM,; = pR, +7PA;). We present three sets of results withn a specific order and mapping state is maintained between
(p,m) set to (1, 0), (O, 1), and (1, 1), respectively. Table \dpplications. The idea behind this algorithm is to maintain
summarizes the resultant hardware resources used for eemhsistency when mapping nodes of the same type. The appli-
application and the total system area for the three cases. cations are considered in the order of decreasing application

1) Observations:This method uses the principle of movingeriticality (i.e., sequence M2E-H-M2D). Table VI summarizes
nodes with high repetitions to hardware. In case 2A, it wake resultant hardware resources used for each application and
found that nodes idct, mc, sub, and dct were mapped to hatide total system area.
ware (since they had higher repetitions) as against software irl) Observations:CHOP gives a much better solution than
experiment 1. This was achieved by changing the threshaltht obtained in either of the first two experiments. In par-
values when mapping these nodes. As a consequence, ndidesar, the solution is 38% smaller than that obtained when
with lower repetitions such as vild and sink3 got mapped #pplications are considered independently. The results ob-
software. This resulted in a lowered system area. In case 2&ned so far indicate that CHOP is superior to HOP. This may
the PA measures do not appear to help in improving thiee attributed to the fact that CHOP incorporates some of the
solution over case 1, since the PA measures have the satasign principles in HOP and also takes the consistency into



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING 835

2
2 T T T T T T T T T T T T

GC GC
threshold threshold
hardware hardware

software software
X X — : X X

%
O
X
X
X

GC, threshold, and the resultant mapping
GC, threshold, and the resultant mapping

3 4 3 4
algorithm steps algorithm steps

(@ (b)
Fig. 10. Algorithm trace for MPEG2 decode (M2D). (a) M2D in experiment 1. (b) M2D in experiment 3.

TABLE VI 250 T T T T
set
RESULTS OF EXPERIMENT 3 M2E
LS set M2D %
[ v A
[ ]
Application Hardware Resources Used System Cost 200 = }:4[]. Set =
[ ]
- [:l
M2E CP, HAL, HA2, HA8 103 , § H
H CP, HAL, HA2, HA4, HAS, HAB, | g § wsof . sel
HA9, HA11 5 1 X
M2D CP 65 5 M2E ' ® 1
° '
Set CP, HAL, HA2, HA4, HA5, HA8, | .o 5 0O 'om M2E M2E & -
HA9, HA11 Co
L m M2D
' L |
. . . . . . 50 P, 1 -
consideration. We also found that considering the applications -
in the order of decreasing criticality gives the best solution. M2D -+ g M2 r
This is attributed to the effect that by giving preference to the ol ! 2 NN
more critical application first, a better overall solution can be Expt 1 Expt 2 Expt 3
obtained. independent mapping HOP CHOP

Fig. 11. Comparing hardware area for each application and for the complete
set for the three experiments.

E. Algorithm Trace

To give a better insight into the working of the algorithm . .

a trace of the algorithm flow is shown in Fig. 10 for theF' Comparing the Three Experiments
M2D app”cation_ The graph p|0ts the a|gorithm step onihe Flg 11 summarizes the results obtained from the three
axis and the?C and threshold on th& axis. The mappings €xperiments. For each experiment, the hardware area for each
of nodes are as shown. Fig. 10(a) shows the flow when tAgplication and total system area for the set of applications
application is mapped independently, as in experiment i$. plotted. The CHOP method seems to give the best solu-
F|g 10(b) shows the flow when the app“cation is mappé{lpn. Note that accepting a Suboptimal solution for M2D in
using CHOP. In this case, this application is considered laggXperiment 3 leads to an overall better system solution.

In Fig. 10(a), at the first two steps ti& is higher than the ~ When the solutions from experiments 1 and 3 were com-
threshold and a hardware mapping is selected. In Fig. 10(Bgred, we found that there was not much consistency when
the threshold is raised in the first two steps, biasing tHBapping repeated nodes. In experiment 1, for example, of
node toward software. This happens because these two ndé€sfour instances of the node “iquant,” two were mapped to
have been mapped to software by the applications considef@idware and two to software. Overall, eight of the repeated
previously. After the first two nodes get mapped to softwar8odes had mapping inconsistencies. In contrast, by using
the next two nodes (iquant, idct) get biased toward hardwafeiOP in experiment 3, only one repeated node had different
This shows how the changed threshold helps to change tAwlementations in different applications. This happened be-
mappings. Also observe that the solution for M2D by itsefause the local and timing constraints had an overriding effect.
is worse than in experiment 1. Specifically, when considered
independently, special hardware accelerators were used for this VII. CONCLUSION

application. Now, due to the bias, the coprocessor is usedy\e have formulated, as a codesign problem, the design and

However, the advantage is a reduced overall system cost sigggthesis of an efficient hardware-software implementation for
the same coprocessor is used in all applications. an embedded system that runs a prespecified set of applica-



836 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

tions. The goal is to design an implementation that can support 226-163, Mar. 1997. [Online]. Available WWW: http://www.bell-

icati i icati labs.com/user/kalavade/papers/pdf/daem-partitioning.pdf.
all the appl!catlons fro'.“ the glv?n S.et.' Any one ?‘ppllcatlo ] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
may be active at run time, and its timing constraints should™ famework for simulating and prototyping heterogeneous systemis,”

be met. The design objective is to minimize the overall area J. Comput. Simulatiarvol. 4, pp. 155-182, Apr. 1994.
of the system [3] A. Kalavade and E. A. Lee, “A hardware/software codesign methodol-

. . . ogy for DSP applications,l[EEE Design Test Comput. Magp. 16-28,
Although this problem can be viewed as one that involves Sge)ét. 1993. PP 9 P ep

an ASIP design, we have intentionally formulated the problenf#] A. Kalavade, “System-level codesign of mixed hardware-software sys-

in a manner that avoids automatic processor design. Instead, tlegngg, Ph.D. dissertation, University of California, Berkeley, CA, Sept.

we assume that the processor core and some macrofunctign J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping

hardware modules are available. Further, the applications are ©f djga%althjmensli‘é% ffChitecmfe*EEE Design Test Comput. Mag.
' “ ” . pp. —o1l, June .
assumed to be specified at a “coarse” level of granularityg) " 'sar, A. V. Alomary, Y. Honma, and T. Nakata, “PEAS-I: A

These assumptions have been made with a view to reducing hardware/software codesign system for ASIP developmeliCE

the complexity of the problem while still allowing for solutions ~ Trans. Fundamentals Electron., Commun. Comput, Sol. E77-A, no.
3, pp. 483-91, Mar. 1994.

that are useful in practice. [71 N. Ngoc, M. Imai, A. Shiomi, and N. Hikichi, “A hardware/software
We presented two methods to solve the problem. The key partitioning algorithm for designing pipelined ASIP’s with least gate

- - - inati counts,” inProc. 33rd DAG June 1996, pp. 527-532.

idea is tO_ _analyze the_ entire set of _appllcatlons tO. ex_tra%] J. Van Praet, G. Goossens, D. Lanneer, and D. H De Man, “Instruction

commonalities across different nodes in different applications.” set definition and instruction selection for ASIP's,” Rroc. 7th Int.

We identified several measures that characterize the nodes and Symp. High-Level Synthesikliagara-on-the-Lake, Canada, 1994, pp.

; ; 11-16.
defined ways to quam'fy them. These measures are used H. Ing-Jer and A. M. Despain, “Generating instruction sets and microar-

bias the mapping of a node. In general, the mapping decision chitectures from applications,” iRroc. ICCAD 94 pp. 391-396.

for common nodes is made by considering the combinatid#] P- Paulin, tC‘fLIem'bT.ddng, a{‘d S-AS‘tthlirwa'av “D,SPt_ des',gfé t°t°_' |
. . g . . requirements tor embedded systems: elecommunications Inaustria

of. gpp!lcathn—.spemflc requirements (as dlctafced by th_e g!obal perspective,”J. VLSI Signal Processvol. 9, no. 1/2, pp. 23-47, Jan.

criticality within the application) as well as interapplication 1995,

demands (modeled by the commonality measures). Nodes that W. Zhao and _C. A. Papachristou, “Synthesis of reusable DSP cores
based on multiple behaviors,” iAroc. ICCAD 96 pp. 103-109.

are not common across applications get mapped in a way Sys}) . potkonjak and W. Wolf, “Cost optimization in ASIC implemen-
that feasibility is met while still attempting to minimize the tation of periodic hard-real time systems using behavioral synthesis
total area._ In p articular, we pr.esemed two methods to partitigﬂ] tAe.cr&rglcgi/easa; Ir;iz:iocﬁ.lCI\/(I:()Ag]Ee?S“Rpio?)‘wa:rE[}érformance estimation of
such application sets. In the first method (HOP), nodes that aré networked embedded systems, Rroc. DAG June 1998, pp. 257—262.
repeated more often across different applications are biadé#l D. Rao and F. Kurdahi, “Partitioning by regularity extraction,”Rroc.
toward hardware so as to improve the utilization of the sp 5] Egtguz’r‘}\g bQQgOtEgnJSES ;r?c?% Rabaey, “System-level design guidance
cialized hardware accelerators. For the example considered, it using algorithm properties¥LSI Signal Processing V1. Rabaey, P.
was found that this method reduces the overall system area by M. Chau, and J. Eldon, Eds. New York: IEEE Press, 1994.

8% when compared to the solution obtained when applications

are considered independently. In the second method (CHOP),

applications are considered in a specific order for partitioning,

dictated by the relative criticality of applications. Mapping

decisions made in one application are shared with the other

applications in an attempt to maintain consistency in mappir - Asawaree Kalavadereceived the B.E. degree in

common nodes. When mapping a node type for the first tirr ?,f;“;’h”;cﬁmi';‘;’sit‘ye'ﬁf %T,omn“; "iﬁﬂf’; Sinefgégegggg
its PA measure is used to select its mapping. In this way, wh the M.S. and Ph.D. degrees in electrical engineering
the node is being considered for the first time, the best possi from the University of California (UC), Berkeley,
mapping is selected for the node, considering the effect of t in égzﬁsanglegnigérre;p%g‘éﬁ'%él Staff in the Net.
current application only. Based on the experiments carried ¢ worked Multimedia Systems Research Department,
so far, this method appears to be superior to the first meth J Bell Labs, Murray Hill, NJ. Her current research
(the resultant solution is 38% smaller). This is attributed to t{ias | interests include performance estimation and rapid
. . .. . prototyping tools for the system-level design of
fact that CHOP incorporates some of the design principles {Bworked embedded systems. She previously was with the DSP and VLSI
and also takes the consistency into consideration. ystems Research Department, Bell Labs, where she led a team of researchers
HOP and also takes th tency int derat S R hD Bell Labs, where she led f h
working on the design and implementation of tools for the design of software
for a single-chip multiprocessor DSP. Her contributions include defining
ACKNOWLEDGMENT the software architecture of the system, the design and implementation of
a multiprocessor real-time kernel, and the design of a static schedulin
The amhors g_ratefully aCknOWIedge_ P_' MOghe for Severﬁémgmﬁrk. She also hells developed a fast analytligcal performalnce—estin#laltic?n
valuable discussions on the algorithmic issues as well as f@imework called AsaP. AsaP has been used for the design of networked
his feedback on this paper. They also thank the anonym@"@eddecj systems as well as for quantifying the impact of different run-time
— . scheduling policies on multimedia end systems. Her doctoral research focused
referees for insightful feedback on this paper. on several aspects of hardware/software codesign (including partitioning,

cosynthesis, and cosimulation). She was part of the Ptolemy project group
REFERENCES at Berkeley. She is the author of numerous papers and has consulted for
Berkeley Design Technology, Inc.
[1] A. Kalavade and E. A. Lee, “The extended partitioning problem: Dr. Kalavade received the Best Student Award for academic excellence
Hardware/software mapping, scheduling, and implementation-b{€ollege of Engineering, Poona) and the Dora Garibaldi Fellowship (UC
selection,” J. Design Automat. Embedded Systol. 2, no. 2, pp. Berkeley).



KALAVADE AND SUBRAHMANYAM: HARDWARE/SOFTWARE PARTITIONING

P. A. Subrahmanyam (M'84-SM'96-F'97) is a
Consulting Professor in the Computer System Lab-
oratory at Stanford University, Stanford, CA. He
was with Bell Laboratories Research, most recently
involved with the design of the software/hardware
architecture of multiprocessor-based systems-on-a-
chip for multimedia and wireless applications. His
current work relates to 1) the design of, and the
design methodology and tools for, a new generation
u! of embedded/networked information appliances and
: systems on a chip and 2) ways to leverage commu-

nication (intranet/internet) frameworks in the design and deployment of these
applicances. His research interests span various aspects of computer-aided
design, software/hardware architecture, formal methods, hardware-software
codesign, and embedded system design. He has authored/coauthored/edited
more than four books on formal methods of very-large-scale-integration design
and multimedia systems and has authored/coauthored more than 100 journal
and conference papers. He has presented several colloquia, invited technical
talks, and tutorials at universities, research laboratories, and conferences
worldwide and has chaired/served on various technical/conference/National
Science Foundation program committees.

Dr. Subrahmanyam has received both the Outstanding Paper Award and
Outstanding Presentation Award at ICCD.

837



